LINZ

: CENTER OF
MECHATRONICS
GMBH

X2l

Getting Started with X2C

March 13, 2015

(©Linz Center of Mechatronics GmbH

Contents

Installation
Software versions

Setup with Scilab/Xcos support
2.1 nstallation L
2.2 Deinstallation

How-To
X2C code generation with Scilab/Xcos

Loading and building the demo application Blinky in Code Composer Studio

Loading and building the demo application Blinky in MPLAB X

Part |

Installation
1 Software versions
Following software versions were tested for full X2C functionality:
Software Version
Required:
Scilab 5.5.1
Java Runtime Environment 6
Optional:
MiKTeX 2.9
Texas Instruments Code Composer Studio 5.5.0.00077
Texas Instruments Code Generation Tools 6.1.6
Keil pVision 4.x
MPLAB X IDE 2.X

Different versions of these programs may work but without warranty.

2
2.1

1.

2.2

Setup with Scilab/Xcos support

Installation

Open Scilab/Xcos and with the File Browser navigate to
<X2C_ROOT>\System\Scilab\Scripts. Right click on setup.sce and click Execute
in Scilab.

. Restart Scilab/Xcos

. The setup command creates a X2C configuration file which will automically load X2C

libraries and palettes at startup of Scilab/Xcos .

Deinstallation

. Open Scilab/Xcos and execute the command initX2C(%£) in the Scilab/Xcos console.
. Restart Scilab/Xcos

. Once above command was execeuted, the X2C configuration file is deleted and Scil-

ab/Xcos will not load any X2C libraries or palettes anymore.

Part 11

How-To

3 X2C code generation with Scilab/Xcos

The following section describes X2C code generation of a Scilab/Xcos Model. The descrip-
tion is based on the Blinky demo application used with the T/ Piccolo F28069 ControlSTICK
programmed with Code Composer Studio . However the following section works with other
example projects such as Microstick Il and MPLAB Xor others as well. The only difference
are the path variables of the project.

1. Open Scilab/Xcos and in the file browser navigate to your project directory
(e.g. C:\projects\Blinky_(TI_Piccolo_F28069_controlSTICK)\X2CCode).

2. Double click on DemoApplication.zcos. The example project contains a few blocks
used to demonstrate the basic function of X2C (see figure 1). The Inport and Outport
blocks define the interface between the generated X2C code and the peripheral func-
tions (e.g. ADC or GPIO Pins) on the target. For details about each blocks function

read X2Copen.Doc.pdf in the documentation folder of the X2C directory.

5 DemoApplication (D:\X2C\DemoApplication\Blinky_T1_TMS320F28069_controlSTICK\X2CCode\DemoApplication.zcos) - Xcos

File Edit View Simulation Format Tools ?

1ol

OB &= @] |

Ampltuds

ut

H

a|r @|laale @

Blinky TI TMS320F28069 controlSTICK Demo

Frequency

ut

H

1
i

ML

LED off

i In1
\—P Switch

In3

ut

H

L

LED on

start
Communicator

transform Mods! and
push to Communicator

N

=

2

Out

utoSwitch

3. Double click on start Communicator.
Communicator are shown in the Log area of the Communicator window.

Figure 1: Blinky demo application in Scilab/Xcos

Some details of the current actions of the

Listing 1: Commandline Scilab/Xcos start Communicator

Starting Communicator >start ..\\X2C_2014-07-14_r

469 _jenkins -X2C-341__open\\X2C\System\Scilab\run\x2c_start_communic
ator_con.cmd<

done

Successfully connected to Communicator

[S I PO SR

Double click on Transform model and push to Communicator and check the com-
mand line of Scilab/Xcos .

Listing 2: Commandline Scilab/Xcos Transform model and push to Communicator

1 Model transformation start
2 Model transformation done

Click Create Code. Now the files X2C.h and X2C.c are generated in the
<PROJECT_ROOT>\X2CCode directory.

. After code generation the Log Screen should look something like seen in listing 3. The
C code of the Scilab/Xcos Model is now created.

Listing 3: Communicator Log Screen

Settings loaded

Connecting

Connect OK

*%x%x DEVICE INFO *x*x*

Target: TMS320F28069

Monitor date/time: 2014-07-16 15:44
Monitor version: 5

Application date/time: 2014-07-16 15:44
Application version: 1

connected via RMI

Model updated

Model XML file write: OK

Create code successful.

© 0N o O RA W N

e e
w N R O

. The C code for the X2C application is now created. Depending on the used target
start the programming tool (e.g. Code Composer Studio or MPLAB X) and import the
Blinky demo application project like described in section 4, or 5 respectively. Follow
the instructions on how to configure and flash the project on the target.

4

The

Loading and building the demo application Blinky in Code
Composer Studio

demo application Blinky is build for the combination of the T/ Piccolo F28069 Control-

STICK with the TMS320F28069 processor.

1.

2.

6

Connect the T/ Piccolo F28069 ControlSTICK with the computer.

With your OS file browser navigate to the DemoApplication folder in your X2C directory
<X2C_ROOT >\DemoApplication\Blinky_(TI_Piccolo_F28069_controlSTICK).

. Copy the project folder to a choosen location
(e.g. C:\projects\Blinky_(TI_Piccolo_F28069_controlSTICK)).

. Open Code Composer Studio (choose workspace directory as you like). Now click
Project — Import Existing CCS Eclipse Project. Browse to the location of the
Blinky project . Click Finish to import the project.

. In the Code Composer Studio file structure of the Blinky demo project there are two
virtual folders Blocks and Core which should be linked directly to the X2C direc-
tory. To ensure this go to Project — Properties drop down Resource and click
Linked Resources. Double click on folder X2C_ROOT and set the correct link (e.g.
<X2C_ROOT>). After hitting OK two times there should not be any warnings signs
(like shown in figure 2) beside the Icons in the Blocks and Core folders.

4 [y Blocks 4 [°p Blocks
- g Add_FiP16.c + gy Add_FiP16.c
+ |y AutoSwitch_FiP16.c gy AutoSwitch_FiP16.c
- |4 Constant_FiP16.c . + |y Constant_FiP16.c
- | Constant_FiP8.c + gy Constant_FiP&.c
- gy Gain_FiP16.c gy Gain_FiP16.c
: Lﬁ LookupTable FiP16.c - |y LookupTable_FiP16.c
- g Scope_Main.c + g Scope_Main.c
- gy Sin_Data.c + gy Sin_Data.c
- g 5in3Gen_FiP16.c - g 5in3Gen_FiP16.c
+ | gy SinGen_FiP16.c + gy SinGen_FiP16.c
- gy ul_FiP16.c + gy ul_FiP16.c

Figure 2: Code Composer Studio invalid (left) and valid (right) X2C root directory

. The generated code from X2C is located in the folder ../X2CCode. To check if code
generation went fine go to the X2CCode folder and open X2C.c. Make sure time and
date of code generation is plausible.

. Build the project in Code Composer Studio by clicking Project — Build all or by
clicking on the Hammer symbol as seen in figure 3 at the top of the screen. Check
for errors while building in the console at the bottom of the screen.

&~ -

Figure 3: Code Composer Studio build and debug buttons

8. If your target is connected to the computer click Run — Debug or click on the Bug
symbol as seen in figure 3 at the top. The Program is now transferred to the target
an can be started with the green arrow button at the top.

9. After starting the program the on-board LED of the Piccolo controlSTICK should be
blinking!

5 Loading and building the demo application Blinky in MPLAB X

The demo application Blinky is build for the combination of the Microstick Il with the
dsPIC33FJ128MC802 processor and the Microstick Plus developer board (Details www.
microstick.com).

Info: While flashing new code only the Microstick Il needs to be connected with the com-
puter.

1. Connect the Microstick Il with the computer.

2. Open MPLAB Xand click File — Open Project. Browse to the location of the Blinky
demo application in the X2C directory <X2C_ROOT >\DemoApplication\. ..
\Blinky_(Microchip_dsPIC33Fxxxx_MicrostickPlus)). Click Open Project.

3. The project called Blinky_dsPIC33Fxxxx_MicrostickPlus appears in the Projects area.
If you want to move the project to another directory right click on the Projectname
— Move. Choose the new project location and click Move. When moving a project in
MPLAB Xwith the Move function, MPLAB Xautomatically updates the path variables
for the source files. However the path variables for the header include files need to be
updated.

4. After moving there might show up an error during building because some path variables
in the compilers settings refer to wrong directories.

5. To ensure the compiler uses the correct path variables right click on the Projectname
— Properties — XC16 Global Options — xcl6-gcc. In the drop down menu
Option categories choose Preprocessing and messages. Click on the dots beside C
include dirs. There are relative paths to the needed include files listed as seen in figure
4. Correct the links by double clicking on the path variables.

Info: Only the links to the Library and Controller path need to be updated (as seen

in figure 5).
¥ Cinclude dirs =]
(owror [2om]
(2CCode
Monitor
Application

N AController\Common

.NController\Driver\Serial

NController\services

. NContraller\Protocol{ Net

.. \Library\Math\Controlleriinc

\
\
\
.\ Library\General\Controllerijne
\
\

.. \Library\Contral\Contraller jjnc

(Enter or 'Browse' string here)

Relative paths are from
MPLAB X project directory, Lok | [cancd |

Figure 4: Default path variables for the include files

www.microstick.com
www.microstick.com

i ™

‘Cinclude dirs @

| Destroy || Down ” Up ” Browse...

¥2CCode -

Monitor
Application
Diluser' W2C_2014-07-14 r469_jenkins-X2C-341_ open'¥2C\Controller\Common

D luserW2C_2014-07-14 r469_jenkins-X2C-341_ open'¥2C\Controller\Driver\Serial

DeluserW2C_2014-07-14 r469_jenkins-X2C-341_ open'¥2C\Controller\services

DeluserW2C_2014-07-14_r469_jenkins-X2C-341_ open'¥2C\Controller\ProtocoliLMet

D:userW2C_2014-07-14_r469_jenkins-X2C-341_ open'¥2C\Library\General\Controlleriine

D:\user W 2C_2014-07-14_r469_jenkins-X2C-341_ open'¥2CLibrary\Contral\Controllernc

D:Yusery2C_2014-07-14_r469_jenkins-X2C-341_ open'¥X2CLibraryMath'Contralleriing
EwoBomsgbed
Relative paths are from
MPLAB X project directory. l 2.4] l El]

Figure 5: Custom path variables for the include files

6. Go to Run — Clean and Build Main Project or click the hammer with brush button
as seen in figure 6. After building there should be a message BUILD SUCCESSFUL in
the message area at the bottom of the screen.

Figure 6: MPLAB X Clean and Build Main Project button

7. If the build process was successful go to Run — Run Main Project or click the Green
Arrow button as seen in figure 6. If there is a message similar to MICROSTICK not
Found try to select the Starter Kits (PKOB) tool as shown in figure 7.

3 MICROSTICK not Found (23w

The last tool used for this project is unavailable. FPlease select the tool that
you want to use to debug or program from the following list of available
tools:

, Hardware Tools
-l ICD 3
- PICKit2
- PICKit3
-~ PM3
-0 Real ICE
-2 Simulator
= |, Microchip Starter Kits
@ MCHY
—+3 MICROSTICK
--@ SKDE 33 ALDIO
@ SKDE Memary
@ SKDE PIC13F]
@ SKDE PIC24F 1
@ SKDE PIC24H SEMSOR
--@ SKDE PIC32
[=+2 Starter Kits (PKOEB)
=8 Uther Tools
L2 Licensed Debugger

[0K][Cancel]

Figure 7: Tool selection before programming the device

8. After starting the program the LED (RB12) on the Microstick Plus Board should be
blinking!

	I Installation
	Software versions
	Setup with Scilab/Xcos support
	Installation
	Deinstallation

	II How-To
	X2C code generation with Scilab/Xcos
	Loading and building the demo application Blinky in Code Composer Studio
	Loading and building the demo application Blinky in MPLABX

