
Getting Started with X2C

March 13, 2015
c©Linz Center of Mechatronics GmbH

Contents

I Installation 2

1 Software versions 2

2 Setup with Scilab/Xcos support 2
2.1 Installation . 2
2.2 Deinstallation . 2

II How-To 3

3 X2C code generation with Scilab/Xcos 3

4 Loading and building the demo application Blinky in Code Composer Studio 5

5 Loading and building the demo application Blinky in MPLABX 7

1

Part I

Installation

1 Software versions

Following software versions were tested for full X2C functionality:

Software Version

Required:

Scilab 5.5.1

Java Runtime Environment 6

Optional:

MiKTeX 2.9

Texas Instruments Code Composer Studio 5.5.0.00077

Texas Instruments Code Generation Tools 6.1.6

Keil µVision 4.x

MPLAB X IDE 2.x

Different versions of these programs may work but without warranty.

2 Setup with Scilab/Xcos support

2.1 Installation

1. Open Scilab/Xcos and with the File Browser navigate to
<X2C ROOT>\System\Scilab\Scripts. Right click on setup.sce and click Execute
in Scilab.

2. Restart Scilab/Xcos

3. The setup command creates a X2C configuration file which will automically load X2C
libraries and palettes at startup of Scilab/Xcos .

2.2 Deinstallation

1. Open Scilab/Xcos and execute the command initX2C(%f) in the Scilab/Xcos console.

2. Restart Scilab/Xcos

3. Once above command was execeuted, the X2C configuration file is deleted and Scil-
ab/Xcos will not load any X2C libraries or palettes anymore.

2

Part II

How-To

3 X2C code generation with Scilab/Xcos

The following section describes X2C code generation of a Scilab/Xcos Model. The descrip-
tion is based on the Blinky demo application used with the TI Piccolo F28069 ControlSTICK
programmed with Code Composer Studio . However the following section works with other
example projects such as Microstick II and MPLABXor others as well. The only difference
are the path variables of the project.

1. Open Scilab/Xcos and in the file browser navigate to your project directory
(e.g. C:\projects\Blinky (TI Piccolo F28069 controlSTICK)\X2CCode).

2. Double click on DemoApplication.zcos. The example project contains a few blocks
used to demonstrate the basic function of X2C (see figure 1). The Inport and Outport
blocks define the interface between the generated X2C code and the peripheral func-
tions (e.g. ADC or GPIO Pins) on the target. For details about each blocks function
read X2Copen.Doc.pdf in the documentation folder of the X2C directory.

Figure 1: Blinky demo application in Scilab/Xcos

3. Double click on start Communicator. Some details of the current actions of the
Communicator are shown in the Log area of the Communicator window.

3

Listing 1: Commandline Scilab/Xcos start Communicator

1 Starting Communicator >start ..\\ X2C_2014 -07-14_r

2 469 _jenkins -X2C -341 __open \\X2C\System\Scilab\run\x2c_start_communic

3 ator_con.cmd <

4 done

5 Successfully connected to Communicator

4. Double click on Transform model and push to Communicator and check the com-
mand line of Scilab/Xcos .

Listing 2: Commandline Scilab/Xcos Transform model and push to Communicator

1 Model transformation start

2 Model transformation done

5. Click Create Code. Now the files X2C.h and X2C.c are generated in the
<PROJECT ROOT>\X2CCode directory.

6. After code generation the Log Screen should look something like seen in listing 3. The
C code of the Scilab/Xcos Model is now created.

Listing 3: Communicator Log Screen

1 Settings loaded

2 Connecting ...

3 Connect OK

4 *** DEVICE INFO ***

5 Target: TMS320F28069

6 Monitor date/time: 2014 -07 -16 15:44

7 Monitor version: 5

8 Application date/time: 2014 -07 -16 15:44

9 Application version: 1

10 connected via RMI

11 Model updated

12 Model XML file write: OK

13 Create code successful.

7. The C code for the X2C application is now created. Depending on the used target
start the programming tool (e.g. Code Composer Studio or MPLABX) and import the
Blinky demo application project like described in section 4, or 5 respectively. Follow
the instructions on how to configure and flash the project on the target.

4

4 Loading and building the demo application Blinky in Code
Composer Studio

The demo application Blinky is build for the combination of the TI Piccolo F28069 Control-
STICK with the TMS320F28069 processor.

1. Connect the TI Piccolo F28069 ControlSTICK with the computer.

2. With your OS file browser navigate to the DemoApplication folder in your X2C directory
<X2C ROOT>\DemoApplication\Blinky (TI Piccolo F28069 controlSTICK).

3. Copy the project folder to a choosen location
(e.g. C:\projects\Blinky (TI Piccolo F28069 controlSTICK)).

4. Open Code Composer Studio (choose workspace directory as you like). Now click
Project → Import Existing CCS Eclipse Project. Browse to the location of the
Blinky project . Click Finish to import the project.

5. In the Code Composer Studio file structure of the Blinky demo project there are two
virtual folders Blocks and Core which should be linked directly to the X2C direc-
tory. To ensure this go to Project → Properties drop down Resource and click
Linked Resources. Double click on folder X2C ROOT and set the correct link (e.g.
<X2C ROOT>). After hitting OK two times there should not be any warnings signs
(like shown in figure 2) beside the Icons in the Blocks and Core folders.

Figure 2: Code Composer Studio invalid (left) and valid (right) X2C root directory

6. The generated code from X2C is located in the folder ../X2CCode. To check if code
generation went fine go to the X2CCode folder and open X2C.c. Make sure time and
date of code generation is plausible.

7. Build the project in Code Composer Studio by clicking Project → Build all or by
clicking on the Hammer symbol as seen in figure 3 at the top of the screen. Check
for errors while building in the console at the bottom of the screen.

Figure 3: Code Composer Studio build and debug buttons

5

8. If your target is connected to the computer click Run → Debug or click on the Bug
symbol as seen in figure 3 at the top. The Program is now transferred to the target
an can be started with the green arrow button at the top.

9. After starting the program the on-board LED of the Piccolo controlSTICK should be
blinking!

6

5 Loading and building the demo application Blinky in MPLABX

The demo application Blinky is build for the combination of the Microstick II with the
dsPIC33FJ128MC802 processor and the Microstick Plus developer board (Details www.

microstick.com).
Info: While flashing new code only the Microstick II needs to be connected with the com-
puter.

1. Connect the Microstick II with the computer.

2. Open MPLABXand click File → Open Project. Browse to the location of the Blinky
demo application in the X2C directory <X2C ROOT>\DemoApplication\. . .
\Blinky (Microchip dsPIC33Fxxxx MicrostickPlus)). Click Open Project.

3. The project called Blinky dsPIC33Fxxxx MicrostickPlus appears in the Projects area.
If you want to move the project to another directory right click on the Projectname
→ Move. Choose the new project location and click Move. When moving a project in
MPLABXwith the Move function, MPLABXautomatically updates the path variables
for the source files. However the path variables for the header include files need to be
updated.

4. After moving there might show up an error during building because some path variables
in the compilers settings refer to wrong directories.

5. To ensure the compiler uses the correct path variables right click on the Projectname
→ Properties → XC16 Global Options → xc16-gcc. In the drop down menu
Option categories choose Preprocessing and messages. Click on the dots beside C
include dirs. There are relative paths to the needed include files listed as seen in figure
4. Correct the links by double clicking on the path variables.
Info: Only the links to the Library and Controller path need to be updated (as seen
in figure 5).

Figure 4: Default path variables for the include files

7

www.microstick.com
www.microstick.com

Figure 5: Custom path variables for the include files

6. Go to Run → Clean and Build Main Project or click the hammer with brush button
as seen in figure 6. After building there should be a message BUILD SUCCESSFUL in
the message area at the bottom of the screen.

Figure 6: MPLABXClean and Build Main Project button

7. If the build process was successful go to Run → Run Main Project or click the Green
Arrow button as seen in figure 6. If there is a message similar to MICROSTICK not
Found try to select the Starter Kits (PKOB) tool as shown in figure 7.

8

Figure 7: Tool selection before programming the device

8. After starting the program the LED (RB12) on the Microstick Plus Board should be
blinking!

9

	I Installation
	Software versions
	Setup with Scilab/Xcos support
	Installation
	Deinstallation

	II How-To
	X2C code generation with Scilab/Xcos
	Loading and building the demo application Blinky in Code Composer Studio
	Loading and building the demo application Blinky in MPLABX

