
Documentation

X2C v6.2.1835
Free Edition

February 21, 2020
c©Linz Center of Mechatronics GmbH

Contents

I Installation 5

1 Software versions 5

2 Setup with Scilab/Xcos support 5
2.1 Installation . 5
2.2 Uninstallation . 5

3 Setup of Java for standalone operation 6

4 Configuration of Code Composer Studio 7
4.1 Install the TI v16.9.5 compiler . 7
4.2 Texas Instruments target processor types . 8

4.2.1 Supported processors families . 8
4.2.2 Change target processor in Code Composer Studio 8

4.3 Change predefined Symbols . 9

5 Configuration of MPLAB X 10
5.1 Install the XC16 compiler . 10
5.2 Microchip target processor types . 10

5.2.1 Supported processors families . 10
5.2.2 Change target processor in MPLAB X 10

5.3 Change predefined Symbols . 10

II General 12

6 Introduction to X2C 12
6.1 Boolean data representation . 12
6.2 Fixed point data representation . 12

6.2.1 Standard signals . 12
6.2.2 Unlimited/Unbalanced signals . 13

6.3 Floating point data representation . 14
6.3.1 Standard signals . 14
6.3.2 Unlimited/Unbalanced signals . 14

6.4 Restrictions . 15
6.4.1 Algebraic loops . 15
6.4.2 Connection of blocks with different implementations 15

7 Basic structure of the C Code 16
7.1 Main.c . 16
7.2 Hardware.c . 16

8 Testing 17
8.1 JUnit tests . 17
8.2 CUnit tests . 17

9 Coding Conventions 18
9.1 Language . 18
9.2 General naming conventions . 18
9.3 Naming of files . 18
9.4 Naming of functions and methods . 18

1

9.5 Naming of macros . 18
9.6 Naming of variables . 18
9.7 Naming of model parameters . 19
9.8 Naming of X2C blocks . 19
9.9 Source and header files . 19
9.10 Global definitions . 19
9.11 Template files . 20
9.12 Include order of header files . 20
9.13 Hardware registers . 20

10 MISRA-C 2004 compliance 21
10.1 Applied rules . 21

III Utilities 22

11 Communicator 22
11.1 Scilab/Xcos Communicator start . 22
11.2 Standalone Communicator start . 22
11.3 Basic functions of the Communicator . 22
11.4 Settings . 25
11.5 Change parameters on the target with the Communicator 26

12 Scope 27

13 Block Generator 29
13.1 Block properties . 29
13.2 Implementation properties . 31
13.3 Save or load a block . 32

IV How-To 33

14 X2C code generation with Scilab/Xcos 33

15 Loading and building the demo application Blinky in Code Composer Studio 35

16 Loading and building the demo application Blinky in MPLAB X 36

17 Loading and building the demo application Blinky in Keil µVision 38

18 The creation of an external project-specific X2C block 40
18.1 The creation of the basic structure . 40
18.2 Coding the source file . 44
18.3 Coding the conversion function . 45

18.3.1 A conversion function in Java . 45
18.3.2 A conversion function in JavaScript . 46
18.3.3 A conversion function in Python . 46

18.4 Finalizing the block in Scilab . 46
18.5 The block in Code Composer Studio 7 . 46

2

19 Setup X2C for use in a B&R R©Automation Studio R© project 47
19.1 Configuration . 47
19.2 Logical View . 48
19.3 Software Configuration . 49
19.4 Communication configuration . 49

V Libraries 50

20 Basic 50
CommunicatorStart (Xcos only) . 51
CreateDocumentation . 52
Interact (Xcos only) . 53
ModelTransformation (Xcos only) . 54

21 Control 55
AdaptivePT1 . 55
Delay . 58
DT1 . 60
I . 63
PI . 66
PID . 69
PIDLimit . 72
PILimit . 75
PT1 . 78
TDSystemO1 . 81
TDSystemO2 . 84
TF1 . 87
TF2 . 90
uI . 92

22 General 95
And . 95
AutoSwitch . 96
Constant . 98
Gain . 101
Inport . 103
Int2Real . 104
Limitation . 107
LookupTable . 109
LookupTable1D . 111
LookupTable2D . 115
LoopBreaker . 119
ManualSwitch . 121
Maximum . 124
Minimum . 126
Not . 128
Or . 129
Outport . 130
RateLimiter . 131
Real2Int . 134
Saturation . 137
SaveSignal . 139

3

Selector . 141
Sequencer . 145
Sin2Limiter . 148
Sin3Gen . 151
SinGen . 154
TypeConv . 156
uConstant . 160
uGain . 163
uRateLimiter . 165
uSaveSignal . 168
Xor . 170

23 Math 171
Abs . 171
Add . 173
Atan2 . 175
Average . 178
Cos . 180
Div . 183
Exp . 186
L2Norm . 188
Mult . 190
Negation . 192
Sign . 194
Sin . 196
Sqrt . 199
Sub . 202
Sum . 204
uAdd . 208
uSub . 210

4

Part I

Installation

1 Software versions

Following software versions were tested for full X2C functionality:

Software Version

Required:

Scilab (www.scilab.org) 5.5.2

Optional (for standalone operation):

Java Runtime Environment Java SE 8 / ojdkbuild 13 JRE

Optional (for documentation):

MiKTeX (www.miktex.org) 2.9

Doxygen (www.doxygen.org) 1.8.10

Graphviz (www.graphviz.org) 2.38

Optional (for programming):

Texas Instruments Code Composer Studio 9.x

Texas Instruments Code Generation Tools c2000_16.9.5.LTS / arm_16.9.4.LTS

Keil µVision 5.x

Microchip MPLAB X IDE 5.xx

Microchip Compiler XC16 1.xx

Different versions of these programs may work but without warranty.

2 Setup with Scilab/Xcos support

2.1 Installation

1. Open Scilab/Xcos and with the File Browser navigate to
<X2C_ROOT>\System\Scilab\Scripts. Right click on setup.sce and click Execute in
Scilab.

2. Restart Scilab/Xcos

3. The setup command creates a X2C configuration file which will automically load X2C
libraries and palettes at startup of Scilab/Xcos .

2.2 Uninstallation

1. Open Scilab/Xcos and execute the command initX2C(%f) in the Scilab/Xcos console.

2. Restart Scilab/Xcos

3. Once above command was execeuted, the X2C configuration file is deleted and
Scilab/Xcos will not load any X2C libraries or palettes anymore.

For the unlikely event that Scilab freezes at startup and remains in a deadlock state, the
deinstallation can be done manually by deleting the file scilab.ini located in the Scilab home
directory (for Windows typically C:\Users\<your user name>\AppData\Roaming\Scilab\scilab-
5.x.x).

5

www.scilab.org
http://github.com/ojdkbuild/ojdkbuild
www.miktex.org
www.doxygen.org
www.graphviz.org

3 Setup of Java for standalone operation

In X2C standalone operation, this means only X2C Communicator and Scope are to be used,
installation and setup of Scilab is not necessary. However, a Java runtime environment is
required.
The recommended Java software is OpenJDK. The ojdkbuild project provides, inter alia,
Microsoft Windows Installer (MSI) files by using the source code of OpenJDK.
Following setup steps are required to setup ojdkbuild for X2C :

1. Download the appropriate MSI installer from the website (the file name starts with
’java-13-openjdk-jre’)

2. Run the installer

3. When the installer reaches the ’Custom Setup’ step, be sure the following additional
options are enabled/selected:

(a) Click on the small ’plus’ symbol next to the ’OpenJDK JRE’ icon to show the list of
available options

Figure 1: Setup Options

(b) Ensure these options are enabled:

• Windows Registry

• PATH Variable

• JAVA_HOME Variable

• JAR Files Association

6

Figure 2: Selected Setup Options

4. Wait for the installer to complete

You may check the successful Java setup by running the X2C Communicator. A double click
on the ’Communicator.jar’ file in the <X2C ROOT>\System\Java directory should open the
Communicator application.

4 Configuration of Code Composer Studio

4.1 Install the TI v16.9.5 compiler

It is necessary to use the compiler version TI v16.9.5 in Code Composer Studio in combination
with X2C . Navigate to Project→ Properties click General and in the Advanced settings
area see what compiler versions are available. It is necessary to use the compiler version TI
v16.9.5. If this version is not selectable go to Help→ Install new Software and in the Work
with drop down menu choose Code Generation Tools Update. In the section TI Compiler
Updates find C2800 Compiler Tools Version 16.9.5 and mark it as seen in Figure 3. Click
Next and install the update. Now go back to the Project Properties and change the compiler.

7

Figure 3: Code Composer Studio Compiler Download

4.2 Texas Instruments target processor types

4.2.1 Supported processors families

Currently the following Texas Instruments processor families are supported by X2C .

• TI C28x 32-Bit CPU

• TI TM4C12x 32-Bit CPU (ARM Cortex-M4 core)

4.2.2 Change target processor in Code Composer Studio

In the following section file names may vary with different processor types.

1. Import the Blinky demo application in Code Composer Studio (see Section 15 for more
information).

2. Change the Predefined symbols (see Section 4.3) suitable for the used processor type.

3. With the OS file browser navigate to the controlSUITE subdirectory \device_support
and search for your processor type
(e.g. C:\ti\controlSUITE\device_support\f2806x\v130\F2806x_headers).

4. Copy the folders cmd, include and source into the project directory
<PROJECT_DIRECTORY>\TexasInstruments and replace the existing folders from
the processor used in the Blinkdy demo application.

5. In Code Composer Studio open the F28xxx_Device.h file in the folder
<PROJECT_DIRECTORY>\TexasInstruments\include. In the section User To Select

8

Target Device search for your processor and change the 0 to TARGET. An example is
shown in Figure 4.

Figure 4: Change processor type in the device.h file

6. In Code Composer Studio open the files Hardware.h and X2cDataTypes.h and adapt
the file names in the include directives for the F28xxx_Device.h file.

4.3 Change predefined Symbols

The X2C project uses predefined symbols to give the preprocessor information before
compiling the project. Navigate to Project→ Properties open Build→ C2000 Compiler→
Predefined Symbols.
Currently three different processor families can be choosen

• __GENERIC_TI_C28X__ for Texas Instruments Processors

• __GENERIC_ARM_ARMV7__ for ARM Processors

• __GENERIC_MICROCHIP_DSPIC__ for Microchip Processors

The definition

• __CUSTOM_DATATYPE_DEFINITIONS__

is needed to avoid compiler warnings caused by multiple typedefs.

In addition the definition

• SCOPE_SIZE=8000

like seen in Figure 5 needs to be made. The value of Scope Size is changeable and depends
on the intended application and the used target processor. In the Blinky demo applications
these values are already defined.

9

Figure 5: Predefined symbols for generic processor type in Code Composer Studio

5 Configuration of MPLAB X

5.1 Install the XC16 compiler

When working with MPLAB X the compiler to build the project has to be installed manually.
Which compiler is needed depends on the used processor type. In the demo application
Blinky the xc 16 v1.21 compiler from the Microchip web page
(http://www.microchip.com/pagehandler/en_us/devtools/mplabxc/) can be used.

5.2 Microchip target processor types

5.2.1 Supported processors families

Currently the following Microchip processor families are supported by X2C .

• dsPIC 16-Bit CPU

5.2.2 Change target processor in MPLAB X

Right click on the Project→ Properties. In the Configuration area Devices can be picked in
the drop down menu. Click OK to save the changes.

5.3 Change predefined Symbols

The X2C project uses predefined Symbols to give the preprocessor information before
compiling the project. In the the sample project these symbols are already defined. Right click
on the Projectname → Properties → XC16 Global Options → xc16-gcc to eventually
change them. In the section Define C macros a list of defines is available as seen in Figure 6.
Depending on the used target processor three different processor families can be choosen

10

http://www.microchip.com/pagehandler/en_us/devtools/mplabxc/

• __GENERIC_TI_C28X__ for Texas Instruments Processors

• __GENERIC_ARM_ARMV7__ for ARM Processors

• __GENERIC_MICROCHIP_DSPIC__ for Microchip Processors

In addition the definition

• SCOPE_SIZE=5000

like seen in Figure 6 needs to be made. The value of Scope Size is changeable and depends
on the intended application and the used target processor. In the Blinky demo applications
these values are already defined.

Figure 6: Predefined Symbols in MPLAB X

11

Part II

General

6 Introduction to X2C

6.1 Boolean data representation

Boolean data is based on the header stdbool.h introduced in C99 in the C Standard Library
for the C programming language.

Bool

Implementation type Boolean

Format C99

Minimum value 0 (false)

Maximum value 1 (true)

6.2 Fixed point data representation

6.2.1 Standard signals

Standard signals are symmetrically scaled about zero and their scaling range is]-1...1[.
In a case of an overflow the signal will be limited to 1 (or -1 respectively). For example a
subtraction of a signal with value 0.5 from a signal with value -0.7 will lead to a signal with
value -1.
Depending on the chosen implementation the values are handled in one of the following
formats:

FiP8

Implementation type 8-bit fixed point

Format Q7

Minimum value −0.992 187 500
Maximum value 0.992 187 500

Resolution 0.007 812 500

FiP16

Implementation type 16-bit fixed point

Format Q15

Minimum value −0.999 969 482 421 875
Maximum value 0.999 969 482 421 875

Resolution 0.000 030 517 578 125

12

FiP32

Implementation type 32-bit fixed point

Format Q31

Minimum value −0.999 999 999 534 339
Maximum value 0.999 999 999 534 339

Resolution 0.000 000 000 465 661

6.2.2 Unlimited/Unbalanced signals

The scaling of unlimited/unbalanced signals is [-1...1[. While the standard signals omit one
value to achieve a symmetrical value range, the unlimited (or also called unbalanced) signals
utilize the full value range which leads to a slightly unbalanced value range. As the name
implies unlimited signals won’t be limited. In fact unlimited signals utilize wrapping/overflow
functions of the DSP. For example a subtraction of a signal with value 0.5 from a signal with
value -0.7 will lead to a signal with value 0.8.
So the primary use of the unlimited signal is as angular signal where (-1...1) corresponds to
(-π...π).
Depending on the chosen implementation the values are handled in one of the following
formats:

FiP8

Implementation type 8-bit fixed point

Format Q7

Minimum value −1.000 000 000
Maximum value 0.992 187 500

Resolution 0.007 812 500

FiP16

Implementation type 16-bit fixed point

Format Q15

Minimum value −1.000 000 000 000 000
Maximum value 0.999 969 482 421 875

Resolution 0.000 030 517 578 125

FiP32

Implementation type 32-bit fixed point

Format Q31

Minimum value −1.000 000 000 000 000
Maximum value 0.999 999 999 534 339

Resolution 0.000 000 000 465 661

13

6.3 Floating point data representation

6.3.1 Standard signals

The standard signals in floating point format are not restricted, the full value range according
to the IEEE 754 standard is available.

Float32

Implementation type 32-bit floating point

Format IEEE 754

Minimum value −3.4028234663852885981170418348452e+ 38

Maximum value 3.4028234663852885981170418348452e+ 38

Resolution ±1.1754943508222875079687365372222e− 38
(normalized)

Float64

Implementation type 64-bit floating point

Format IEEE 754

Minimum value −1.797693134862315708145274237317e+ 308

Maximum value 1.797693134862315708145274237317e+ 308

Resolution ±2.2250738585072013830902327173324e− 308
(normalized)

6.3.2 Unlimited/Unbalanced signals

Contrary to their names the unlimited/unbalanced signals in floating point format are limited
to [−π,+π]. All other properties are similar to the unlimited signals in fixed point format.

Float32

Implementation type 32-bit floating point

Format IEEE 754

Minimum value −3.1415926535897932384626433832795
Maximum value 3.1415926535897932384626433832795

Resolution ±1.1754943508222875079687365372222e− 38
(normalized)

Float64

Implementation type 64-bit floating point

Format IEEE 754

Minimum value −3.1415926535897932384626433832795
Maximum value 3.1415926535897932384626433832795

Resolution ±2.2250738585072013830902327173324e− 308
(normalized)

14

6.4 Restrictions

6.4.1 Algebraic loops

Algebraic loops as depicted in Figure 7a are not possible due to a execution order problem.
Therefore a block is required which breaks the loop at a specific position. This can be
achieved by inserting a block with no direct feedthrough functionality, e.g. Block: LoopBreaker
from the General-library or Block: Delay from the Control-library (see Figure 7b).

(a) forbidden (b) allowed

Figure 7: Algebraic loops

6.4.2 Connection of blocks with different implementations

Though blocks with different implementations are allowed (and computed correctly) in the
same model, connections of ports with different datatypes are not permitted. The conversion
blocks Block: TypeConv, Block: Int2Real and Block: Real2Int can be used to resolve datatype
incompatibilities.

15

7 Basic structure of the C Code

When setting up a new project with X2C code generation it is necessary to configure the
hardware on the target system. The following section provides basic information how the
Blinky demo applications are structured. With this understanding one should be able to adapt
hardware configuration for further projects.
In the following the Blinky demo application in combination with the TI Piccolo F28069
ControlSTICK and the TMS320F28069 Processor is used for demonstration.
Info: The *.c files listed below need to be updated in case of changes in the Scilab/Xcos
model configuration.

7.1 Main.c

• initInterruptVector() defined in Hardware.c configures the target specific interrupts.

• initSerial() defined in Hardware.c initializes the serial interface.

• initHardware() defined in Hardware.c here the peripheral devices such as Watchdog,
GPIO Ports, ADCs, Timers and others are defined.

• X2C_init() defined in X2C.c calls the initialization functions of the X2C blocks.

• The while(1) loop is mainly used for the serial communication.

• The mainTask() function is the key structure of the project. Here the connection
between Outports and Inports are defined and the X2C_Update() function (defined in
X2C.c) is called. The basic structure of the mainTask() is

1. Assign Inports

2. Call X2C_Update()

3. Update Outports

The mainTask() function is usually called by an Interrupt Service Routine (Isr) which
can be triggered by multiple sources.
Example: In the Blinky Demo Application after each ADC conversion cycle the ADCIsr
calls the mainTask() function.

• KICK_DOG resets the Watchdog timer periodically. During operation this timer contin-
uously counts a certain time span (configured in Hardware.c). If the application has
an unexpected failure KICK_DOG can not be called and the Watchdog timer exceeds
its limit and therefore the target reboots. If the operation executes as expected the
Watchdog timer is within the limit and can be reseted by KICK_DOG without any further
actions.

7.2 Hardware.c

In this file all connections and peripheral device settings should be made.

• In initHardware() all peripheral function should be initialized.

– Watchdog timer

– GPIO Ports

– Interrupt initialization

– ADC, Timer, PWM and all the other peripheral devices

• initSerial() initializes the serial interface on the target. The settings made here should
match with the setting made in the Communicator described in Section 11.

16

8 Testing

8.1 JUnit tests

To minimize the risk of software bugs most parts of X2C are tested. The Java core of X2C is
tested wit JUnit tests.

8.2 CUnit tests

Much care is also taken of testing the C-code of the blocks. These so called CUnit tests are
conducted directly on the target. In Figure 8 the test setting can be seen.

Figure 8: CUnit test setting

In the test environment on the PC a input vector and a parameter vector, if necessary, are
defined and sent to the target via serial interface. On the target the update function of the
block under test is executed. The resulting output vector is transferred back to the PC where
it is compared with a reference output vector. If the difference between the actual and the
reference output vector is below a specified limit the test is marked as passed. Otherwise an
error is reported.
Basically, the generation of the test vectors are done with one or a combination of these
methods:

Equivalence class testing To reduce the number of test items they are grouped into classes
with same behavior. Only one member of each equivalence class is used as entry
for the test vector. Two simple equivalence classes could be positive and negative
numbers.

Boundary testing The entries for the test vectors are chosen in such a way that they lie
below and above critical boundaries. For example, typical values for a FiP16 imple-
mentation would be -32768, -32767, -1, 0, 1, 32767.

Back-to-back testing For complex blocks this method is used. The vectors are generated
by simulating a block or model with the same functionality in Matlab/Simulink or
Scilab/Xcos.

Several different targets are used for testing. The test reports can be found in the library
documentation Library.source.pdf in the directory <X2C_ROOT>\Library.

17

9 Coding Conventions

9.1 Language

The native language of X2C is English. Hence all documentation, file names, variables,
comments in source files, etc. should be in English.

9.2 General naming conventions

• Unless otherwise stated, all names should use the camel case notation. A definition
of camel case can be found on http://en.wikipedia.org/wiki/CamelCase. The type of
camel case (upper or lower) depends on the type of name, see sections below.

Examples: ThisIsUpperCamelCasing.java, showLowerCamelCaseExample()

• Non-ASCII characters should be avoided. Also the space character schould not be
used.

• Due to a character limitation in Scilab, names with more than 27 characters should be
avoided.

• Names should not start with a number.

• Hungarian notation should not be used.

9.3 Naming of files

In general files should have a meaningful name. If abbreviations are used, easy understand-
able ones should be used. Upper camel case is recommended.
Examples: Hardware.c, SystemControl.c, GlobalDefines.h

9.4 Naming of functions and methods

Function and method names should contain a verb to describe the action of the function.
The verb is placed first and is in lower case and subsequent nouns start with a capital letter
(lower camel case).
Examples: readADC(), setPWM()

9.5 Naming of macros

Macros should be written in capital letters. Macro names which contain mutiple words should
use a underscore as seperator (screaming snake case).
Examples: DISABLE_PWM, NO_ERROR

9.6 Naming of variables

Based on the proposed convention from Sun Microsystems following guidelines should be
considered:
Variables are in mixed case with a lowercase first letter. Internal words start with capital
letters. Variable names should be short yet meaningful. The choice of a variable name
should be mnemonic- that is, designed to indicate to the casual observer the intent of its
use. One-character variable names should be avoided except for temporary "throwaway"
variables. Common names for temporary variables are i, j, k, m, and n for integers; c, d, and
e for characters.
Examples: int16 i; float32 myWidth;

18

http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/Hungarian_notation
http://en.wikipedia.org/wiki/Snake_case

9.7 Naming of model parameters

Parameter and variable names in Matlab or Scilab should follow lower snake case notation.
This means the first word can either start with a lower or upper case letter, all subsequent
words have to start with a lower case letter, and the words are seperated by underscores.
Examples: i_ref, n_max, k_T, U_dc_max

9.8 Naming of X2C blocks

Block and Subsystem/Superblock names in Matlab or Scilab should follow upper camel case
notation. Exceptions are words with abbreviations, then a underscore character as seperator
is allowed to increase readability.
Examples: CurrentController, OffsetAngle, AnIn1, DigOut1, I_Phase1

9.9 Source and header files

Every *.c source file should have a corresponding *.h header file. A minimalistic header with
prototype definitions is sufficient.
Due to MISRA rule 8.1 (see MISRA-C 2004 compliance) it is required to have prototypes for
every function, including static ones. To avoid conflicts between global and static function
prototypes when including header files, the following rule shall apply:

• Global function prototypes should be located in its header file

• Static function prototypes should be located at the beginning of its source file

9.10 Global definitions

Definition of macros which are used in more than one source file should be placed in
GlobalDefines.h. Macros only used in one file should be defined in the source file in which
they are used.
Globally needed variables should be defined in GlobalDefines.c and declared in
GlobalDefines.h. This way all global variables are at one place and can be referenced from
every file which has the GlobalDefines.h header file included.
Example:

Listing 1: GlobalDefines.c
1 #include "GlobalDefines.h"

2

3 /* *** */

4 /* Global Variables */

5 /* *** */

6 uint16 errorstate = NO_ERROR; /* Error Message */

7 uint32 modulestate = NO_ERROR; /* Module Status */

8 FIStates FIState = RESET_STATE; /* State of frequency inverter */

Listing 2: GlobalDefines.h
1 #ifndef GLOBALDEFINES_H

2 #define GLOBALDEFINES_H

3

4 #include "Target.h"

5 #include "X2C.h"

6

7 /* *** */

8 /* Global Variables */

9 /* *** */

10 extern uint16 errorstate; /* Error Message */

11 extern uint32 modulestate; /* Module Status */

12 extern FIStates FIState; /* State of frequency inverter */

13

14 #endif

19

http://en.wikipedia.org/wiki/Snake_case

9.11 Template files

For an easy orientation standard file names should be used in X2C projects:

• Main.c: Frame program main file.

• Hardware.c: Hardware configuration and initialization.

• GlobalDefines.*: Files with globally needed definitions and variables.

• SystemControl.c: File with startup sequence of power electronics and error handling.

• InterruptControl.c Interrupt handling, especially interrupt vector table and interrupt
service routines.

• InputControl.c: Handling of analog and digital inputs.

• OutputControl.c: Handling of analog and digital outputs.

• CANControl.c: Configuration, initialization and functions of a CAN interface.

Of course, if files contain a lot of code it is recommended to split the file into several ones to
maintain comprehensibility.
Example: Splitting of InputsControl.c in AnalogInputControl.c,
DigitalInputControl.c and HallSensorControl.c

9.12 Include order of header files

To avoid conflicts and missing dependencies header files should be included in following
order:

1. System headers

2. Application headers

3. Header of current source file

Example:

Listing 3: Main.c
1 #include "VersionInfo.h"

2 #include "GlobalDefines.h"

3 #include "Hardware.h"

4 #include "SystemControl.h"

5 #include "InputControl.h"

6 #include "OutputControl.h"

7 #include "Main.h"

9.13 Hardware registers

To maintain comprehensibility and to allow interchangeability of source files hardware (DSP)
registers should be accessed via macros.
Example:

#define SET_LED (GPBSET = 0x00000004)

/* some code */

SET_LED;

/* some more code */

instead of
/* some code */

GPBSET = 0x00000004;

/* some more code */

20

10 MISRA-C 2004 compliance

The rules of the Motor Industry Software Reliability Association MISRA should be followed as
much as possible. Some major rules are:

• MISRA-C:2004 2.2/R: Source code shall only use /* ... */ style comments.

• MISRA-C:2004 19.4/R: C macros shall only expand to a braced initialiser, a constant,
a string literal, a parenthesised expression, a type qualifier, a storage class specifier, or
a do-while-zero construct.

• MISRA-C:2004 8.12/R: When an array is declared with external linkage, its size shall
be stated explicitly or defined implicitly by initialisation.

• MISRA-C:2004 18.4/R: Unions shall not be used.

• MISRA-C:2004 16.3/R: Identifiers shall be given for all of the parameters in a function
prototype declaration.

• MISRA-C:2004 19.15/R: Precautions shall be taken in order to prevent the contents of
a header file being included twice.

• MISRA-C:2004 19.1/A: #include statements in a file should only be preceded by other
preprocessor directives or comments.

• MISRA-C:2004 8.1/R: Functions shall have prototype declarations and the prototype
shall be visible at both the function definition and call.

10.1 Applied rules

1 /* Enable MISRA -C:2004 checking (all rules) */

2 --check_misra="all"

3

4 /* Rule violation handling */

5 --misra_advisory="warning"

6 --misra_required="warning"

7

8 /* Exceptions */

9 --check_misra=" -1.1" /* (MISRA -C:2004 1.1/R) Ensure strict ANSI C mode (-ps)

is enabled */

10 --check_misra=" -12.7" /* (MISRA -C:2004 12.7/R) Bitwise operators shall not be

applied to operands whose underlying type is signed */

11 --check_misra=" -19.7" /* (MISRA -C:2004 19.7/A) A function should be used in

preference to a function -like macro */

12 --check_misra=" -5.7" /* (MISRA -C:2004 5.7/A) No identifier name should be

reused */

Listing 4: MISRA.opt

21

http://www.misra.org.uk/

Part III

Utilities

11 Communicator

The Communicator is the interface between the target system and the model in Scilab/Xcos .
It is used to create the C code in the X2C.c and X2C.h files out of the model. Furthermore it is
used to transfer data between the computer and the target. When started the Communicator
is connected with the model via RMI interface and via serial interface with the target (DSP).

11.1 Scilab/Xcos Communicator start

As described in Section 14 the Communicator is started out of an open Scilab/Xcos model
with the buttons start Communicator. The button Transform model and push to Communicator
loads the model file (.xml) into the Communicator. Changes in the model structure can be
made and pushed to the Communicator by double clicking on the button Transform model
and push to Communicator.

11.2 Standalone Communicator start

If there are no intended changes in the model structure it is possible to start the Communicator
without Scilab/Xcos . In <X2C_ROOT>\System\Java double click on Communicator.jar. In
the open Communicator go to Model→ Load Model and browse to your project directory.
In the X2CCode folder choose the model (.xml) file and open it. In the Status tab check the
Log area if the model has been loaded successfully.

11.3 Basic functions of the Communicator

The Communicator is structured into the menu bar (1) the basic function buttons (2) and
three main tabs (3).

Figure 9: Basic structure of the Communicator

1. Menu bar

• In the File menu the settings can be modified, loaded and saved.

22

• In the Model menu a new .xml file can be loaded and saved.

2. Function buttons

• With the button Connect to Target the Communicator can be connected respec-
tively disconnected from the target.

• Create Code generates the X2C.c and X2C.h files out of the X2C model.
Changes in the Model tab like Sample time require new code creation.

• Create RTOS Code was moved to Settings. See 11.4 for details.

• In the Download settings the .hex and .map files out of the C code build process
can be loaded. These files are needed for two functions:

(a) In the full version of X2C the Communicator needs these files for flashing the
code on the target through the serial interface. This function is not available
in the free version.

(b) In the full version and the free version of X2C these files (especially the .map
file) are needed for block data transfer. For more information see Number 3.

• The Download application to target function is only available in the full version
of X2C . This function provides program flashing via the serial interface without
any use of external programing devices.

• The Scope button starts an oscilloscope like environment for plotting signals and
variables of the running target. For more information see Section 12.

3. Tabs

• In the Status tab there are two main areas as seen in Figure 10. In DSP state the
current status of the connected target is shown. The following states are possible:

– The Bootloader state is only active before code flashing (full version of X2C
). In the free version this state is only active when the target reboots after an
application error.

– The Program loaded is active after code flashing.

– In the Idle state only the communication between target and computer is
active. All controller functions are inactive furthermore the Outports values
are static.

– The Init state calls the initialization functions of all X2C blocks. In this state
all signals an variables are reset to their initial values.

– Run - Power off means the application is running normally but the power
supply of the power electronics (e.g. frequency converter) is off.

– In Run - Power on the system is fully active.

Info: In the Blinky demo application the last four states cannot be changed
because they are only useful for engine control applications.
The Log area shows status updates and error messages and can be cleared with
the Clear button.

23

Figure 10: Communicator status

• The Setup tab is for the interface configuration. To change the settings the
Communicator needs to be disconnected from the target.
There are a few ways to connect with the target. One can choose between Serial,
USB and PCAN interface. The setting made here need to be compatible with the
target configurations.
In the Protocol area the LNet Node ID can be set. By default this value is set to 1.
Since the Communicator can be used with more than one target each target is
defined with an unique LNet Node ID.

Figure 11: Communicator setup

• In the Model tab the Model structure area provides a list of the used blocks in the
Scilab/Xcos model. Jump to Section 11.5 to see how variables can be changed

24

through the Model structure settings.
The Model properties settings need to be made before code generation.

– The Sample time can be changed in the Scilab/Xcos model by changing the
values in the CLOCK block. After double clicking on transform model and
push to Communicator the sample time in the Communicator is updated.
After clicking on Analyze the sample in the Communicator is updated.
Note: Changes of the sample time made in the model need to be compatible
with the defined sample time on the target.

– Use Scope was moved to Settings. See 11.4 for details.

– Use Parameter ID for block data transfer was moved to Settings. See 11.4
for details.

Figure 12: Communicator Model

11.4 Settings

Settings can be found in the ’File’ menu. These are split into Common and Advanced
options. Following options are available for configuration: (angular brackets = default state)

• Use Scope [enabled]

Use Scope defines if the scope application (see Section 12) can be used when
connected with the target. When disabled the target processor is relieved due to less
communication effort.

• Create RTOS code [disabled]

Generates code which is optimized for real time operations.

• Connect to target on startup [enabled]

Tries to connect to the target when the Communicator starts. If this option is enabled,
the previously used communication setup is being used.

• Use Parameter-ID for block data transfer [enabled]

When Use Parameter ID for block data transfer is enabled the Communicator gen-
erates an identification number for each block in the Scilab/Xcos model during code

25

generation. As an result only signals at X2C blocks can be observed with the Scope.
When disabled the Communicator uses the generated .map file out of C code building
for block data transfer. In this file the register addresses of the X2C block signals and
furthermore the addresses of global variables used on the target processor are stored.
The .map file can be loaded with the button Download settings. With this setting it is
possible to observe X2C block signals as well as global variables with the scope.

• Create Signals code [disabled]

Creates a file containing lists with internal X2C signals. These signals are Inports,
Outports and Block Outports.

• Create & compile HotInt code [disabled]

Generates HotInt specific files. After successful generation, the HotInt project
(Microsoft R©Visual Studio) is being compiled. The latest version being found is used
for compilation. Supported Visual Studio versions:

– Visual Studio 2013

– Visual Studio 2012

Figure 13: Communicator Settings

11.5 Change parameters on the target with the Communicator

If all connection are set up properly there are two ways of changing the parameter values on
the running target.

1. In the Communicator click on Model. In the Model structure area all the Block properties
are listed and can be changed by double clicking on them.

2. In the Scilab/Xcos model double click on the blocks and change the values.

26

12 Scope

The Scope application is a very useful device for monitoring signals and variables on the
running target. It allows an easy observation in an oscilloscope like environment. The Scope
is structured into four main areas as seen in Figure 14.

Figure 14: Communicator Scope

1. The Plot area shows the selected values at a time based abscissa (x-coordinate) in
milliseconds and scaled from −1.0 to 1.0 at the ordinate (y-coordinate). Furthermore
there is a legend a the bottom of the plot area showing the color of each channel.

2. In the Sample/Timing Info section options of the time axis can be made. The oscil-
loscope is started with the button SAMPLE. When the option Single-shot is marked
only one time period (see Total time) is shown in the plot area. When unmarked the
plot area continuously plots the received values from the target. Due to time delay in
data transfer it is possible that there a missing values between two plot cycles.
The plot process can be stopped with the button ABORT.
With the option Sample time factor the time axis can be scaled. Factor 1 means every
value (Time between two values is Sample Time) is plotted in the plot area. As example
factor 5 means every fifth value is used, therefore a longer time span can be plotted at
the time axis.

3. The Channel Configuration configures which signal is shown at the plot area. There
are eight channels that can be plotted simultaneously. Mark Enable to configure one
channel. In the Type menu Address, Block Port and I/O port can be chosen. I/O ports
are the links between the target peripheries and the X2C model. The Block Port are

27

signals used in the X2C model.
When fixed point data representation is selected all signal are scaled to values between
−1.0 and 1.0, therefore one might use the option Gain or Offset to plot the signal in
real scale.

4. The Trigger Configuration is divided in the options NORMAL and AUTO. When
option AUTO is chosen no specific trigger is set. In this configuration signal values
are continuously transfer and plotted. This can lead to moving graphs especially when
periodic signals are observed.

Choose NORMAL to set up a trigger.

(a) In Source Config choose a signal which should work as trigger source.

(b) With Edge the trigger only checks rising respectively falling edges of the source
signal.

(c) The Level and Delay options move the trigger point in vertical and time direction.

Example: Trigger the harmonic sine wave u from a SinGen block.
As trigger source the signal itself is used. When the trigger is delayed in time a vertical
marker indicates the position. The effect of the settings Level with a value of 0.2 and
Edge for FALLING can be seen in Figure 15.

Figure 15: Scope Trigger using Example

28

13 Block Generator

The Block Generator is used to create new blocks, load and/or edit previously saved blocks.
The following, essential parameters define the block function:

13.1 Block properties

Name

Each block within a library must have a unique name.

Library type

The library type selection is done via the ’Change configuration’ button.
An internal library block will be stored within the X2C structure where only the library name is
required. The internal library name can be selected via a dropdown menu.
When the block is saved, the files will be automatically saved into the correct directories.
An external (or project specific) block is stored within its project structure and requires
the user to enter a library name and pre-namespace identifier. Both, the library name &
pre-namespace, is enterd via text fields.
When the block is saved, a window will appear, which allows to select the project directory for
this project specific block (only directory selection is possible) The Block Generator tries to
save the files in the following structure (directories will be created automatically if they don’t
exist):
<selected directory>\Library\<library name>\

Identifier

Every block needs an unique identifier (ID) across all libraries to ensure proper functionality if
a project uses blocks from different libraries. ID should be a value < 4000 for internal blocks
and a value ≥ 4000 for external blocks.

Additional LATEX information file

In case of having a LATEX file with additional block information the name of the file can be set.

Mask in- & outports

Every block can have several inports & outports. Each in-/outport must have an unique name.

29

Mask parameters

Every block can have several mask parameters. Each mask parameter must have an unique
name. Prompt will be displayed next to the value input of this parameter. Data type decides
between an input field for type Double or a dropdown menu for type ComboBox.
In case of type Double you can select the Default value for this parameter.
Type ComboBox lets you add/remove items which can be selected by the user if this pa-
rameter value should be changed. The default value is defined by selecting one out of the
entries.
Visible makes this parameter visible, Changeable en- or disables this parameter.

Visualizations

Visualizations are used to represent the block within a model. Command contains the
language specific commands to represent the block.

30

13.2 Implementation properties

Every block must have at least 1 Implementation. Each Implementation has its Init-, Update-,
Save- and Load functions (C) and Conversion functions (Java/Python/JavaScript).

Name

Each implementation must have a unique name within a block. The Implementation name is
used for C- & Java code file name.

Identifier

Every Implementation needs an unique idendifier (ID) within its block. This ID can have
values in the range from 0 to 15.

Controller In- & Outports

The Controller In- & Outport names can be selected but not edited. The names are defined
by the block’s Mask In- & Outports. Only the data type must be selected for each In-/Outport.

Controller Parameter

Each Controller Parameter must have an unique name within its Implementation. The data
type and default value can be selected. Also the ability to download/upload the parameter
can be defined by using Load & Save Enable checkbox.

Flash table

A flash table can be enabled for this block by using the Array checkbox. If Array checkbox is
selected, the size of the flash table must be specified by Array size, which is not the case
when the Array in flash memory checkbox is selected.

31

Conversion function type

The Conversion function type can be selected by using the dropdown menu. If Java, Python
or JavaScript is selected, the Block Generator will generate a conversion function template
file for this block which needs to be manually filled with block-specific conversion calculations,
otherwise no conversion function file will be created.

Update enable

If checked, an Update function is generated when saving the block.

13.3 Save or load a block

Saving & loading is done via the File menu in the menu bar.

Saving

If the selected block is member of an internal library, the Block Generator automatically uses
the correct library root directory.
In case of an external library block type, the user is prompted a directory selection window, in
which the project directory can be selected. The library root directory is now located in:
<user directory selection>\<Library>\<library name>.
Each library is organized in this structure:

• Controller: Directory with the C-code source files (*.c, *.h).

• Conversion: Directory with the Java, Python or JavaScript conversion files.

• Doc: Directory with files needed for the (auto-generated) documentation.

• Scilab: This directory contains the Scilab/Xcos library files as well as the interfaces
functions and the files need for simulation in Scilab/Xcos .

• XML: Configuration files (*.xml) contain all block parameters and are located in this
directory.

32

Part IV

How-To

14 X2C code generation with Scilab/Xcos

The following section describes X2C code generation of a Scilab/Xcos model based on the
Blinky demo application.

1. Open Scilab/Xcos and in the file browser navigate to your project directory
(e.g. <X2C_ROOT>\DemoApplication\Blinky_TI_TMS320F28069_controlSTICK\
X2CCode).

2. Double click on DemoApplication.zcos. The example project contains a few blocks
used to demonstrate the basic function of X2C (see Figure 16). The Inport and Outport
blocks define the interface between the generated X2C code and the peripheral
functions (e.g. ADC or GPIO Pins) on the target. For details about each block function
read X2Copen.Doc.pdf in the documentation folder of the X2C directory.

Figure 16: Blinky demo application in Scilab/Xcos

3. Double click on start Communicator (for more information about the Communicator
see Section 11). Some details of the current actions of the Communicator are shown
in the Log area of the Communicator window and the Scilab/Xcos command line:

1 Starting Communicator

2 done

3 Successfully connected to Communicator

4. Double click on Transform model and push to Communicator and check the pop-up
window for the end of the transformation process.

33

5. Click Create Code in the Communicator. Now the files X2C.h and X2C.c are generated
in the <PROJECT_ROOT>\X2CCode directory and the Log screen should contain the
lines:

1 [...]

2 Model updated

3 Model XML file write: OK

4 Create code successful.

6. The C code for the X2C application has been created. Depending on the used target
start the programming tool (e.g. Code Composer Studio , Keil µVision or MPLAB X
) and import the Blinky demo application project as described in Section 15, or 16
respectively. Follow the instructions on how to configure and flash the project on the
target.

34

15 Loading and building the demo application Blinky in Code
Composer Studio

The demo application Blinky is intended to be used with a TI F28069 Piccolo controlSTICK.

1. Connect the TI F28069 Piccolo controlSTICK to the computer.

2. Open Code Composer Studio (choose workspace directory as you like). Now click
Project→ Import Existing CCS Eclipse Project. Browse to the location of the Blinky
project (<X2C_ROOT>\DemoApplication\Blinky_TI_TMS320F28069_controlSTICK).
Click Finish to import the project.

3. In the Code Composer Studio file structure of the Blinky demo project there are two
virtual folders Blocks and Core, which should be linked directly to the X2C directory.
To ensure this go to Project → Properties drop down Resource and click Linked
Resources. Double click on folder X2C_ROOT and set the correct link to your X2C
installation directory (<X2C_ROOT>). After hitting OK two times there should not be
any warning signs (like shown in Figure 17) at the icons for the linked files in the Blocks
and Core folders.

Figure 17: Code Composer Studio invalid (left) and valid (right) X2C root directory

4. The generated code from X2C is located in the folder <X2C_ROOT>\DemoApplication\
Blinky_TI_TMS320F28069_controlSTICK\X2CCode. To check if code generation went
fine go to the X2CCode folder and open X2C.c. Make sure time and date of code
generation is plausible.

5. Build the project in Code Composer Studio by clicking Project → Build all or by
clicking on the Hammer symbol as seen in Figure 18 at the top of the screen. Check
for errors while building in the console at the bottom of the screen.

Figure 18: Code Composer Studio build and debug buttons

6. If your target is connected to the computer click Run → Debug or click on the Bug
symbol as seen in Figure 18 at the top. The program is now transferred to the target
and can be started with the green arrow button at the top.

7. After starting the program the on-board LED of the TI F28069 Piccolo controlSTICK
should be blinking!

35

16 Loading and building the demo application Blinky in
MPLAB X

The demo application Blinky is build for the combination of the Microstick II with the
dsPIC33FJ128MC802 processor and the MicrostickPlus developer board (for details see
www.microstick.com).
Info: While flashing new code only the Microstick II needs to be connected with the computer.

1. Connect the Microstick II with the computer.

2. Open MPLAB X and click File→ Open Project. Browse to the location of the Blinky
demo application in the X2C directory <X2C_ROOT>\DemoApplication\. . .
\Blinky_Microchip_dsPIC33Fxxxx_MicrostickPlus. Click Open Project.

3. In the case the demo application is copied/moved to a different location, the include
paths have to be adapted. To ensure the compiler uses the correct path variables right
click on the Projectname→ Properties→ XC16 Global Options→ xc16-gcc. In the
drop down menu Option categories choose Preprocessing and messages. Click
on the dots beside C include dirs. There are relative paths to the needed include files
listed as seen in Figure 19. Correct the links by double clicking on the path variables.
Info: Only the links to the Library and Controller path need to be updated.

Figure 19: Default path variables for the include files

4. Go to Run→ Clean and Build Main Project or click the hammer with brush button
as seen in Figure 20. After building there should be a message BUILD SUCCESSFUL in
the message area at the bottom of the screen.

Figure 20: MPLAB X Clean and Build Main Project button

5. If the build process was successful go to Run→ Run Main Project or click the Green
Arrow button as seen in Figure 20. If there is a message similar to MICROSTICK not
Found try to select the Starter Kits (PKOB) item which represents your board.

36

www.microstick.com

6. After starting the program the LED (RB12) on the MicrostickPlus Board should be
blinking!

37

17 Loading and building the demo application Blinky in Keil
µVision

The demo application Blinky is intended to be used with the ST STM32F051R8 Discovery or
the ST STM32F072RB Nucleo kit.

1. Connect the ST development kit with the computer. You may have to install the ST-Link
USB driver (available on www.stm.com) to get the board recognized by your operating
system.

2. Open Keil µVision and click Project → Open Project. Browse to the
location of the Blinky project (either <X2C_ROOT>\DemoApplication\
Blinky_ST_STM32F051R8_Discovery or <X2C_ROOT>\DemoApplication\
Blinky_ST_STM32F072RB_Nucleo). Click Open to import the project.

3. In the Keil µVision file structure of the Blinky demo project are two virtual folders Blocks
and Core, which are linked relatively to the X2C directory. If the Blinky demo project is
copied/moved to a different location, the include paths as seen in Figure 21 have to be
adapted.

Figure 21: Keil µVision include paths setting

To open shown window go to Project→ Options for target ’Blinky Demo’ change
to tab C/C++ and click ... next to the include paths text field.

4. The generated code from X2C is located in the X2CCode folder (eg. <X2C_ROOT>\
DemoApplication\Blinky_ST_STM32F072RB_Nucleo\X2CCode). To check if code gen-
eration went fine go to the X2CCode folder and open X2C.c. Make sure time and date
of code generation are plausible.

5. Build the project in Code Composer Studio by clicking Project→ Build target or by
clicking on the Build symbol as seen in Figure 22 at the top left of the Keil µVision
screen. Check for errors while building in the console at the bottom of the screen.

Figure 22: Keil µVision build and load buttons

6. If your target is connected to the computer click Flash→ Download or click on the
Download symbol as seen in Figure 22 at the top left of the Keil µVision screen. The
program is now transferred to the target and is automatically started.

38

www.st.com

7. After starting the program the green on-board LED of the ST development kit should
be blinking!

8. To use X2C Communicator and Scope the computer has to be connected via serial
interface to the development kit. Early versions of the ST STM32F051R8 Discovery kit
do not support virtual COM port over USB. In this case a TTL-level compatible RS-232
adapter has to be connected to pin PA9 - TxD, PA10 - RxD and GND.

39

18 The creation of an external project-specific X2C block

The creation of an external project-specific X2C block is summarized in three steps by the
subsequent three subsections.

18.1 The creation of the basic structure

The first step in the creation of an external project-specific X2C block is the creation of
its basic structure using X2C Block Generator previously described in Section 13. X2C
Block Generator can be initiated by executing the BlockGenerator.jar file located in
<X2CRoot>\System\Java\. Once executed, X2C Block Generator opens up in the form of
the GUI shown in Figure 23 whose options are described hereafter.

Figure 23: The initial appearance of the X2C Block Generator GUI

Block Parameters

• Name of the block needs to be uniquely specified for the unambiguous identification of
the block in the library and the MATLAB Simulink or Scilab Xcos model.

• Prompt is displayed in the help of the block in Scilab Xcos.

• Description of the block is displayed in the dialog window of the block in both MATLAB
Simulink and Scilab Xcos and should describe the purpose of the block.

• License can be selected from the drop-down menu that contains various options or it
can be manually defined by clicking on the Edit push-button.

• Library needs to be specified by clicking on the Change Configuration push-button
that opens up the Library Configuration window in which the External radio-button
should be selected. By doing so, the Library Name and Pre-Namespace text-fields
become available. It is mandatory to save the library in the <ProjectRoot> folder (i.e.
the folder that contains the X2CCode folder).

40

– Library Name should be uniquely specified.

– Pre-Namespace is used for Java conversion functions and can be arbitrarily
selected. For example the library name can be entered here as well.

• ID needs to be an unique integer number between 4000 and 8191, including those two
limits.

• Author of the block should be specified.

• Revision should be specified to enable the distinction between different software
versions of the block.

• TEX File containing a description of the block in the LATEX format that can be optionally
created for the documentation of the block. When writing display math, it is advisable
not to use environments provided by the amsmath package. Instead, displaymath,
equation, array, and eqnarray should be used for consistent rendering of display
equations by JLATEX in the generated .html file. The name of the .tex file should differ
from the name of the block. (Internal convention is <BlockName>_Info.tex).

• Date Created is automatically specified upon the creation of the block.

• Date Changed is automatically specified every time the block is changed.

• Mask Inports are user interfaces that need to be defined for all inputs of the block by
clicking on the Add push-button that opens up the Mask Inport window in which the
Name and Description text-fields under the Parameters section become available.
Every mask inport can also be removed or edited by clicking on the Remove or Modify
push-button, respectively.

– Parameters

∗ Name is displayed in the documentation of the block.

∗ Description is displayed in the documentation of the block.

• Mask Outports are user interfaces that need to be defined for all outputs of the block
by clicking on the Add push-button that opens up the Mask Outport window in which the
Name and Description text-fields under the Parameters section become available.
Every mask outport can also be removed or edited by clicking on the Remove or
Modify push-button, respectively.

– Parameters

∗ Name is displayed in the documentation of the block.

∗ Description is displayed in the documentation of the block.

• Mask Parameters are user interfaces that need to be defined for all parameters of
the block by clicking on the Add push-button that opens up the Mask Parameter
window in which the Name, Prompt, and Description text-fields together with the
Data Type drop-down menu under the Parameters section become available. Every
mask parameter can also be removed or edited by clicking on the Remove or Modify
push-button, respectively.

– Parameters

∗ Name is displayed in the documentation of the block.

∗ Prompt is displayed in the dialog window of the block in both MATLAB
Simulink and Scilab Xcos.

∗ Description is displayed in the documentation of the block and the dialog
window of the block in both MATLAB Simulink and Scilab Xcos.

41

∗ Data Type can be selected from the drop-down menu to be either Double or
ComboBox as well as Visible and/or Changeable by the available check-
boxes.

– Data Type Parameters

∗ Default value of the parameter needs to be specified in the case of Data
Type: Double.

∗ Add or Remove push-buttons become available for adding items in the case
of Data Type: ComboBox.

• Visualizations of the block can be separately defined for MATLAB Simulink by clicking
on the Add Matlab push-button as well as for Scilab Xcos by clicking on the Add
ScilabXcos push-button.

– Visualization Parameters for MATLAB Simulink

∗ Command can contain labels of the block and its input(s) and output(s) that
can be defined as:
disp('\fontsize12<BlockLabel>', 'texmode', 'on')

port_label('input', '<InputNumber>', '<InputLabel>',

'texmode', 'on')

port_label('output', '<OutputNumber>', '<OutputLabel>',

'texmode', 'on')

– Visualization Parameters for Scilab Xcos

∗ Define Section defines options of the block in the x2c_<BlockName>.sci

script between // ++ BlockGenerator: Define Section and // �

BlockGenerator: Define Section.

∗ Block Icon Default Size defines the size of the block in Scilab
Xcos units in the x2c_<BlockName>.sci script between // ++

BlockGenerator: BlockIconDefaultSize and // � BlockGenerator:

BlockIconDefaultSize.

∗ Plot Section defines options of the block in the x2c_<BlockName>.sci script
between // ++ BlockGenerator: Style and // � BlockGenerator:

Style.

∗ Style defines options of the block in the starter.sce script between //

++ BlockGenerator: Plot Section and // � BlockGenerator: Plot

Section.

• Direct Feedthrough should be generally checked. It should be unchecked when the
block serves as a breaker of an algebraic loop.

Implementations

• Current Implementation serves as an identifier of the current implementation and
can be arbitrarily named, whereby multiple implementations are possible. The internal
naming convention of LCM defines Bool (Boolean), FiP8 (8 Bit Fixed Point), FiP16 (16
Bit Fixed Point), FiP32 (32 Bit Fixed Point), Float32 (32 Bit Floating Point), and Float64
(64 Bit Floating Point) as implementations. A new implementation can be defined by
clicking on the Add push-button as well as removed by clicking on the Remove button.

• Default Implementation can be selected by choosing the desired implementation from
the Current Implementation drop-down menu (if multiple available) and clicking on
the Set Default push-button.

42

Implementation Parameters

• Name is automatically taken from the Current Implementation drop-down menu and
every change in the text-field directly renames the selected implementation in the
Current Implementation drop-down menu. The internal naming convention of LCM
defines Bool, FiP8, FiP16, FiP32, Float32, and Float64 as names.

• Display Name of the current implementation is displayed in the dialog window of the
block in the Used Implementation drop-down menu. The internal naming convention
of LCM defines Boolean, 8 Bit Fixed Point, 16 Bit Fixed Point, 32 Bit Fixed Point,
32 Bit Floating Point, and 64 Bit Floating Point as display names. This name is used
for naming of the corresponding C and Java files.

• Description of the current implementation in the documentation of the block. The
internal naming convention of LCM defines Boolean Implementation, 8 Bit Fixed
Point Implementation, 16 Bit Fixed Point Implementation, 32 Bit Fixed Point Im-
plementation, 32 Bit Floating Point Implementation, or 64 Bit Floating Point Im-
plementation as descriptions.

• ID of the current implementation needs to be an integer number between 0 and 15,
including those two limits.

• Author of the current implementation should be specified.

• Revision of the current implementation should be specified to enable distinction be-
tween different implementations of the block.

• Date Created is automatically specified upon the creation of the current implementa-
tion.

• Date Changed is automatically specified every time the current implementation is
changed.

• Controller Inputs of the current implementation need to be defined to be defined with
respect to Mask Inports, whereby the data type can be selected from the drop-down
menu.

• Controller Outputs of the current implementation need to be defined to be defined with
respect to Mask Outports, whereby the data type can be selected from the drop-down
menu.

• Controller Parameters of the current implementation need to be defined with respect
to Mask Outports together with any additional internal parameter can also be defined)
by clicking on the Add push-button that opens up the Controller Parameter window
in which the Name, Description, and Default Value text-fields together with the Data
Type drop-down menu and the Load & Save Enable and Array check-boxes under the
Controller Parameters section become available. Every controller parameter can also
be removed or edited by clicking on the Remove or Modify push-button, respectively.

– Controller Parameters

∗ Name is displayed in the dialog window of the block in both MATLAB Simulink
and Scilab Xcos and denotes a parameter of the block.

∗ Description is displayed in the dialog window of the block in both MATLAB
Simulink and Scilab Xcos and should describe the parameter of the block.

∗ Data Type determines the data type that is to be used on the target.

∗ Default Value sets the default value of the parameter.

• Conversion Function Type can be selected from the drop-down menu between Java,
Python, and JavaScript. After selecting the conversion function type, a template of the
conversion function used for the conversion of mask parameters, which are of the type

43

double, into the data type of the current implementation is generated. The template
needs to be manually adapted. If there are no mask parameters, no conversion function
is necessary.

18.2 Coding the source file

The functionality of the block needs to be manually implemented in the au-
tomatically generated <BlockName>_<Implementation>.c source file located in
<ProjectRoot>\Library\<LibraryName>\Controller\src\. In that source file, ev-
erything between each pair of the comments /* USERCODE-BEGIN: ... */ and
/* USERCODE-END: ... */ stays unchanged even if the source file is regenerated
by X2C Block Generator. Between the first pair of such comments, namely /*

USERCODE-BEGIN:Description */ and /* USERCODE-END:Description */, a short
description of the block can be written in the form of comments. The definitions of the
input(s) and the output(s) as well as parameters, variables, constants, and if necessary, the
inclusions of header files should be defined between /* USERCODE-BEGIN:PreProcessor

/ and / USERCODE-END:PreProcessor */ as

#include "<HeaderFile>.h"

#define <INPUT> (*pT<BlockName>_<Implementation>-><ControllerInport>)

#define <OUTPUT> (pT<BlockName>_<Implementation>-><ControllerOutport>)

#define <PARAMETER> (pT<BlockName>_<Implementation>-><ControllerParameter>)

#define <VARIABLE> (pT<BlockName>_<Implementation>-><ControllerParameter>)

#define <CONSTANT> <HexadecimalValue>

The functionality of the block should be defined between /* USERCODE-BEGIN:UpdateFnc

/ and / USERCODE-END:UpdateFnc */ and can be demonstrated by an example in a
FiP16 implementation as

int32 <Result>;

<Result> = (int32)<INPUT> * (int32)<VARIABLE>;

<Result> >>= <PARAMETER>;

<Result> += (int32)<CONSTANT>;

if (<Result> > INT16_MAX)

{

<Result> = INT16_MAX;

}

else

{

if (<Result> < -INT16_MAX)

{

<Result> = -INT16_MAX;

}

}

<OUTPUT> = (int16)<Result>;

The initial values of used variables can be specified between /* USERCODE-BEGIN:InitFnc

/ and / USERCODE-END:InitFnc */ as

<Variable> = 0;

...between /* USERCODE-BEGIN:LoadFnc */ and /* USERCODE-END:LoadFnc */ and be-
tween /* USERCODE-BEGIN:SaveFnc */ and /* USERCODE-END:SaveFnc */...???

44

18.3 Coding the conversion function

If the block uses mask parameters, the conversion function, which converts the mask
parameters into controller parameters, has to be implemented in the corresponding
programming language as well. The template of the conversion function is located in
<ProjectRoot>\Library\<LibraryName>\Conversion\<ConversionType>\.

18.3.1 A conversion function in Java

In the case of Java, the conversion function of the block needs to be manually imple-
mented in the automatically generated ConvFnc_<BlockName>_<Implementation>.java

file located in <ProjectRoot>\Library\<LibraryName>\Conversion\Java\src\.... Fur-
thermore, Eclipse needs to be installed on the system and the project imported into the
workspace via the menu bar as File ⇒ Import... ⇒ General ⇒ Existing Project. Under
Project ⇒ Build Automatically needs to be enabled and by right-clicking on the project
in the project tree, under Properties ⇒ Java Compiler ⇒ Compiler Compliance Level
needs to be set to 1.6. In the above mentioned file, everything between each pair of the com-
ments // USERCODE-BEGIN: and // USERCODE-END: stays unchanged even if the source
file is regenerated by X2C Block Generator. User-defined Java classes like

import at.lcm.x2c.utils.QFormat;

can be loaded between // USERCODE-BEGIN:Imports and // USERCODE-END:Imports,
while the conversion of the controller parameters from the mask into the designated imple-
mentation needs to be written between // USERCODE-BEGIN:ConvMaskToImplementation

and // USERCODE-END:ConvMaskToImplementation and can be demonstrated by an ex-
ample in a FiP16 implementation as

double <ControlParameter>;

final int BITS = 16;

// Getting the value of the mask parameter:

<ControlParameter> = Double.valueOf(<MaskParameter>MaskVal.getValue());

// Calculating the shift factor:

<ShiftFactor>CtrVal.setReal(0, 0, Double.valueOf(QFormat.getQFormat(

<ControlParameter>, BITS, true)));

// Calculating the Q-value:

<ControlParameter>CtrVal.setReal(0, 0, Double.valueOf(QFormat.getQValue(

<ControlParameter>, (int)(<ShiftFactor>CtrVal.getReal(0, 0)), BITS,

true)));

The conversion of the controller parameters from the designated implementation into the
mask needs to be written between // USERCODE-BEGIN:ConvImplementationToMask and
// USERCODE-END:ConvImplementationToMask as

double <ControlParameter>, <ShiftFactor>;

final int BITS = 16;

// Getting the Q-value:

<ControlParameter> = <ControlParameter>CtrVal.getReal(0, 0);

// Getting the shift factor:

<ShiftFactor> = <ShiftFactor>CtrVal.getReal(0, 0);

45

// Calculating the value of the mask parameter:

<MaskParameter>MaskData.setReal(0, 0, QFormat.getDecValue(

(long)<ControlParameter>, (int)<ShiftFactor>, BITS, true));

18.3.2 A conversion function in JavaScript

In the case of JavaScript, two JavaScript script files are automatically generated
in <ProjectRoot>\Library\<LibraryName>\Conversion\JavaScript\src\..., where
one is used for the conversion of the mask parameters to the implementation parameters,
while the other one is used for the conversion of the implementation parameters to the mask
parameters. The conversion of the mask parameters to the implementation parameters needs
to be manually implemented in ConvertMask2Imp_<BlockName>_<Implementation>.js,
while the conversion of the implementation parameters to the mask parameters needs to be
implemented in ConvertImp2Mask_<BlockName>_<Implementation>.js. Both files contain
/* USERCODE-BEGIN:Description */ and /* USERCODE-END:Description */ as well
as /* USERCODE-BEGIN:ExternalModules */ and /* USERCODE-END:ExternalModules

*/, where between the first pair a short description of the conversion function can be
written, while between the second pair external modules can be imported. The con-
version of the mask parameters to the implementation parameters comes between /*

USERCODE-BEGIN:Convert */ and /* USERCODE-END:Convert */ in the first file, while the
conversion of the implementation parameters to the mask parameters comes between /*

USERCODE-BEGIN:Revert */ and /* USERCODE-END:Revert */ in the second file.

18.3.3 A conversion function in Python

Similar to the case of JavaScript, in the case of Python, two Python scripts are automatically
generated in <ProjectRoot>\Library\<LibraryName>\Conversion\Python\src\...,
where the ConvertMask2Imp_<BlockName>_<Implementation>.py script is used for
the conversion of the mask parameters to the implementation parameters, while the
ConvertImp2Mask_<BlockName>_<Implementation>.py script is used for the conversion
of the implementation parameters to the mask parameters. The scripts are structurally identi-
cal to the above described JavaScript script files containing # USERCODE-BEGIN: ... and #

USERCODE-END: ... sections, where the only difference is the scripting language.

18.4 Finalizing the block in Scilab

In Scilab execute the command createXcosBlock('<LibraryName>', '<BlockName>',

'<ProjectRoot>').

18.5 The block in Code Composer Studio 7

After including the project in Code Composer Studio 7, the library should be listed in the
project tree. Before compiling, it is necessary to exclude the Matlab and Conversion folders
from the build.

46

19 Setup X2C for use in a B&R R©Automation Studio R© project

X2C allows the user to modify an already created Automation Studio R© project for use with
X2C and generate the corresponding code. Therefore several configuration parameters have
to be set.

19.1 Configuration

• Setup a new Automation Studio R© project or use an existing one

• Head to the Communicator settings and configure the the Automation Studio R© specific
parts

1. Enable the "Create Automation Studio code" option

2. Select the project APJ file. After a valid project is selected, the configuration menu
is updated and contains all project configurations. Further Settings elements will
be enabled and updated.

3. Select a configuration, a CPU module and a Application task class. This becomes
the task in which the X2C Update function is called.

4. Should TCP/IP communication be desired for online X2C Block parameter updates
and/or Scope usage, the Communication checkbox must be enabled. Now the
Communication task class selection is enabled and allows you to select the
corresponding task class.

5. The "Use library" option allows you to use X2C as Automation Studio R© library
block

Figure 24: Communicator Automation Studio R© settings

• Confirm the changes by pressing the OK button

• Generate the X2C code as usual

All required X2C and Automation Studio R© files will be created. The Automation Studio
configuration files are being updated to include the newly generated X2C code.

47

19.2 Logical View

Now we can head over to Automation Studio R© to check the modifications and build the
project. Automation Studio R© may ask you to reload changed components.
The "Logical View" should have been updated by X2C content as well as the Software config-
uration file in the "Configuration View". In case of enabled Communication, the B&R R©library
"AsTCP", required for TCP/IP communications, is added to your project libraries.
Therefore your Automation Studio R© project may look like this:

Figure 25: Automation Studio R© Logical View

This example shows the added

• B&R R©AsTCP library

• X2C as Automation Studio R© library

• X2C application program package

• X2C communication program package

48

19.3 Software Configuration

The software configuration file shows the newly added programs and libraries.

Figure 26: Automation Studio R© Software Configuration

19.4 Communication configuration

In case of enabled communication don’t forget to configure the Ethernet and TCP/IP settings
for your hardware in Automation Studio R© .

Figure 27: Automation Studio R© Ethernet configuration using DHCP (X20CP1485)

The X2C integration is now complete and the Automation Studio R© project is ready to be
built.

49

Part V

Libraries

20 Basic

50

Block: CommunicatorStart (Xcos only)

Description:

ith a double-click on this block, the X2C Communicator will start. The Communicator will
connect to Scilab via Java Remote Method Invocation (Java RMI) to enable data exchange
between Scilab and X2C.

51

Block: CreateDocumentation

Description:

With a double-click on this block, a documentation with all relevant information about the
current X2C project can be created. The document will be created in <ProjectDir>\Doc and
will be called ProjectDocumentation_<NameOfModel>.pdf.

Parameters

User documentation: It is possible to add user specific documentation to the project
documentation. When creating the project documentation, the X2CCode directory is scanned
for the specifed tex file (UserDoc.tex by default). If the file is present, it will be included in the
documentation.

Test reports: If the checkbox Add test reports is selected, test reports of the C-Unit tests
of the used X2C blocks are added to the project documentation.

Requirements

In order to generate a documentation in PDF-format a TeX-compiler (e.g. MiKTeX) has to be
installed. The software tools Doxygen and Graphviz are recommended to get documentation
of the C-code.

52

Block: Interact (Xcos only)

Description:

When double-clicked, the block executes the Scilab script doInteraction.sci, if available. By
customizing the script, the user can execute simple tasks, e.g. setting block parameters, read
parameter values, display status information, etc., repeatedly and effortlessly.

53

Block: ModelTransformation (Xcos only)

Description:

With a double-click on this block, the Xcos model will be analyzed. All relevant information for
code generation are gathered, transfered to the Communicator and written to the model XML
file.

54

21 Control

Block: AdaptivePT1

Inports

In Input In(k)

fc Cutoff frequency

Outports

Out Output Out(k)

Mask Parameters

V Gain

fmax Maximum frequency [Hz]
(not used in floating point implementations)

ts_fact Multiplication factor of base sampling time (in integer
format)

method Discretization method

Description:

First order low pass with adaptive cut off frequency:
G(s) = V/(s/(2*pi*fc) + 1)

Transfer function (zero-order hold discretization method):

G(z) = V
1− e−2πfcTs

z − e−2πfcTs

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

55

Inports Data Type

In int8

fc int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

fc int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

fc int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

fc float32

Outports Data Type

Out float32

56

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

fc float64

Outports Data Type

Out float64

57

Block: Delay

Inports

In Input In(k)

Outports

Out Output Out(k)=In(k-1)

Mask Parameters

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

Output delay by one sample time interval.

This block can be used to enable feedback loops in the model.

Implementations:

Bool Boolean Integration

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: Bool

Boolean Integration

Inports Data Type

In bool

Outports Data Type

Out bool

Implementation: FiP16

16 Bit Fixed Point Implementation

58

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Outports Data Type

Out float64

59

Block: DT1

Inports

In Input In(k)

Outports

Out Output Out(k)

Mask Parameters

V Gain

fc Cut off frequency of low pass filter

ts_fact Multiplication factor of base sampling time (in integer
format)

method Discretization method

Description:

First order high pass:
G(s) = V*s/(s/w + 1)

Due to limited value range in the 8 bit fixed point implementation rather high deviations from
expected output values may occur.

Developer note: The source code of block TF1 is used.

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

60

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

61

Outports Data Type

Out float64

62

Block: I

Inports

In Control error input

Init Value which is loaded at initialization function call

Enable Enable == 0: Deactivation of block; Out set to 0
Enable 0->1: Preload of integral part
Enable == 1: Activation of block

Outports

Out Control value

Mask Parameters

Ki Integral Factor

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

I controller:
G(s) = Ki/s = 1/(Ti*s)

Each fixed point implementation uses the next higher integer datatype for the integrational
value storage variable.
A rising flank at the Enable inport will preload the integrational part with the value present on
the Init inport.

Transfer function (zero-order hold discretization method):

G(z) = KiTs
1

z − 1

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

63

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Init int8

Enable bool

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Init int16

Enable bool

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Init int32

Enable bool

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

64

Inports Data Type

In float32

Init float32

Enable bool

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Init float64

Enable bool

Outports Data Type

Out float64

65

Block: PI

Inports

In Control error input

Init Value which is loaded at initialization function call

Enable Enable == 0: Deactivation of block; Out set to 0
Enable 0->1: Preload of integral part
Enable == 1: Activation of block

Outports

Out

Mask Parameters

Kp Proportional Factor

Ki Integral Factor

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

PI controller:
G(s) = Kp + Ki/s

Each fixed point implementation uses the next higher integer data type for the integral value
storage variable.
A rising flank at the Enable inport will preload the integral part with the value present on the
Init inport.

Transfer function (zero-order hold discretization method):

G(z) = Kp +KiTs
1

z − 1

Developer note: For the fixed point implementations the source code of block Block:
PILimit is used.

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

66

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Init int8

Enable int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Init int16

Enable bool

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Init int32

Enable bool

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

67

Inports Data Type

In float32

Init float32

Enable bool

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Init float64

Enable bool

Outports Data Type

Out float64

68

Block: PID

Inports

In Control error input

Init Value which is loaded at initialization function call

Enable Enable == 0: Deactivation of block; Out set to 0
Enable 0->1: Preload of integral part
Enable == 1: Activation of block

Outports

Out

Mask Parameters

Kp Proportional Factor

Ki Integral Factor

Kd Derivative Factor

fc Cutoff frequency of realization low pass

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

PID controller:
G(s) = Kp + Ki/s + Kd*s/(s/(2*pi*fc) + 1)

Each fixed point implementation uses the next higher integer datatype for the integrational
value storage variable.
A rising flank at the Enable inport will preload the integrational part with the value present on
the Init inport.

Transfer function (zero-order hold discretization method):

G(z) = Kp +KiTs
1

z − 1
+Kd2πfc

z − 1

z − e−2πfcTs

FiP8 bug: When using the TI compiler the step response of the derivative part does not
return to zero, but generates an overflow at zero crossing if the derivative parameter value is
too high.

Developer note: For the fixed point implementations the source code of block PIDLimit is
used.

69

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Init int8

Enable int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Init int16

Enable bool

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Init int32

Enable bool

70

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Init float32

Enable bool

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Init float64

Enable bool

Outports Data Type

Out float64

71

Block: PIDLimit

Inports

In Control error input

Init Value which is loaded at initialization function call

max Maximum output value

min Minimum output value

Enable Enable == 0: Deactivation of block; Out set to 0
Enable 0->1: Preload of integral part
Enable == 1: Activation of block

Outports

Out

Mask Parameters

Kp Proportional Factor

Ki Integral Factor

Kd Derivative Factor

fc Cutoff frequency of realization low pass

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

PID Controller with Output Limitation:
G(s) = Kp + Ki/s + Kd*s/(s/(2*pi*fc) + 1)

Each fixed point implementation uses the next higher integer datatype for the integrational
value storage variable.
A rising flank at the Enable inport will preload the integrational part with the value present on
the Init inport.

Transfer function (zero-order hold discretization method):

G(z) = Kp +KiTs
1

z − 1
+Kd2πfc

z − 1

z − e−2πfcTs

FiP8 bug: When using the TI compiler the step response of the derivative part doesn’t
return to zero, but generates an overflow at zero crossing if the derivative parameter value is
too high.

72

Developer note: The fixed point implementation source code of this block is used for block
PID.

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Init int8

max int8

min int8

Enable int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Init int16

max int16

min int16

Enable bool

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

73

Inports Data Type

In int32

Init int32

max int32

min int32

Enable bool

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Init float32

max float32

min float32

Enable bool

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Init float64

max float64

min float64

Enable bool

Outports Data Type

Out float64

74

Block: PILimit

Inports

In Control error input

Init Value which is loaded at initialization function call

max Maximum output value

min Minimum output value

Enable Enable == 0: Deactivation of block; Out set to 0
Enable 0->1: Preload of integral part
Enable == 1: Activation of block

Outports

Out

Mask Parameters

Kp Proportional Factor

Ki Integral Factor

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

PI controller with output limitation:
G(s) = Kp + Ki/s

Each fixed point implementation uses the next higher integer data type for the integral value
storage variable.
A rising flank at the Enable inport will preload the integral part with the value present on the
Init inport.

Transfer function (zero-order hold discretization method):

G(z) = Kp +KiTs
1

z − 1

Developer note: The fixed point implementation source code of this block is used for block
Block: PI.

75

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Init int8

max int8

min int8

Enable int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Init int16

max int16

min int16

Enable bool

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

76

Inports Data Type

In int32

Init int32

max int32

min int32

Enable bool

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Init float32

max float32

min float32

Enable bool

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Init float64

max float64

min float64

Enable bool

Outports Data Type

Out float64

77

Block: PT1

Inports

In Input In(k)

Outports

Out Output Out(k)

Mask Parameters

V Gain

fc Cut off frequency of low pass filter

ts_fact Multiplication factor of base sampling time (in integer
format)

method Discretization method

Description:

First order low pass:
G(s) = V/(s/w + 1)

Due to limited value range in the 8 bit fixed point implementation rather high deviations from
expected output values may occur.

Developer note: The source code of block TF1 is used.

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

78

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

79

Outports Data Type

Out float64

80

Block: TDSystemO1

Inports

In Input #1

Outports

Out Output #1

Mask Parameters

A State matrix A

B Input matrix B

C Output matrix C

D Feedthrough matrix D

Description:

1st order time discrete system with one input and one output.

Calculation:

x1,k+1 = a1,1x1,k + b1,1u1,k

y1,k = c1,1x1,k + d1,1u1,k

or short

xk+1 = Axk +Buk

yk = Cxk +Duk

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

81

Inports Data Type

In int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

82

Inports Data Type

In float64

Outports Data Type

Out float64

83

Block: TDSystemO2

Inports

In1 Input #1

In2 Input #2

Outports

Out1 Output #1

Out2 Output #2

Mask Parameters

A State matrix A

B Input matrix B

Description:

2nd order time discrete system with two inputs and two outputs.

Calculation: [
x1,k+1

x2,k+1

]
=

[
a1,1 a1,2

a2,1 a2,2

][
x1,k

x2,k

]
+

[
b1,1 b1,2

b2,1 b2,2

][
u1,k

u2,k

]
[
y1,k

y2,k

]
=

[
1 0

0 1

][
x1,k

x2,k

]
+

[
0 0

0 0

][
u1,k

u2,k

]

or short

xk+1 = Axk +Buk

yk = xk

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

84

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In1 int8

In2 int8

Outports Data Type

Out1 int8

Out2 int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In1 int16

In2 int16

Outports Data Type

Out1 int16

Out2 int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In1 int32

In2 int32

Outports Data Type

Out1 int32

Out2 int32

Implementation: Float32

32 Bit Floating Point Implementation

85

Inports Data Type

In1 float32

In2 float32

Outports Data Type

Out1 float32

Out2 float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In1 float64

In2 float64

Outports Data Type

Out1 float64

Out2 float64

86

Block: TF1

Inports

In Input In(k)

Outports

Out Output Out(k)

Mask Parameters

b1 b1

b0 b0

a0 a0

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

First order transfer function:
G(z) = (b1.z + b0) / (z + a0)

Due to limited value range in the 8 bit fixed point implementation rather high deviations from
expected output values may occur.

Developer note: The source code of this block is used for blocks DT1 and PT1.

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

87

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

88

Outports Data Type

Out float64

89

Block: TF2

Inports

In Input In(k)

Outports

Out Output Out(k)

Mask Parameters

b2 b2

b1 b1

b0 b0

a1 a1

a0 a0

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

Second order transfer function:
G(z) = (b2.z2 + b1.z + b0) / (z2 + a1.z + a0)

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP8 8 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

90

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Outports Data Type

Out int8

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Outports Data Type

Out float64

91

Block: uI

Inports

In Control error input

Init Value which is loaded at initialization function call

Enable Enable == 0: Deactivation of block; Out is set to 0.
Enable 0->1: Preload of integral part.
Enable == 1: Activation of block

Outports

Out Integrator output

Mask Parameters

Ki Integral Factor

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

Integrator for angle signals:
G(s) = Ki/s = 1/(Ti*s)

Each fixed point implementation uses the next higher integer datatype for the integrational
value storage variable.
A rising flank at the Enable inport will preload the integrational part with the value present on
the Init inport.

Transfer function (zero-order hold discretization method):

G(z) = KiTs
1

z − 1

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

92

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Init int8

Enable bool

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Init int16

Enable bool

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Init int32

Enable bool

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

93

Inports Data Type

In float32

Init float32

Enable bool

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Init float64

Enable bool

Outports Data Type

Out float64

94

22 General

Block: And

Inports

In1

In2

Outports

Out

Description:

Logical AND block.

Implementations:

Bool Boolean Implementation

Implementation: Bool

Boolean Implementation

Inports Data Type

In1 bool

In2 bool

Outports Data Type

Out bool

95

Block: AutoSwitch

Inports

In1 Input #1

Switch Input #2: Threshold signal

In3 Input #3

Outports

Out Either value of input #1 or input #3 dependent on value of
input #2

Mask Parameters

Thresh_up Threshold level for rising switch signal

Thresh_down Threshold level for falling switch signal

Description:

Switch between In1 and In3 dependent on Switch signal:
Switch signal rising: Switch >= Threshold up –> Out = In1
Switch signal falling: Switch < Threshold down –> Out = In3

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In1 int16

Switch int16

In3 int16

Outports Data Type

Out int16

96

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In1 int32

Switch int32

In3 int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In1 float32

Switch float32

In3 float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In1 float64

Switch float64

In3 float64

Outports Data Type

Out float64

97

Block: Constant

Outports

Out Constant output

Mask Parameters

Value Constant factor

Description:

Constant value.

Implementations:

Bool Boolean Implementation

Int8 8 Bit Integer Implementation

Int16 16 Bit Integer Implementation

Int32 32 Bit Integer Implementation

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: Bool

Boolean Implementation

Outports Data Type

Out bool

Implementation: Int8

8 Bit Integer Implementation

Outports Data Type

Out int8

98

Implementation: Int16

16 Bit Integer Implementation

Outports Data Type

Out int16

Implementation: Int32

32 Bit Integer Implementation

Outports Data Type

Out int32

Implementation: FiP8

8 Bit Fixed Point Implementation

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Outports Data Type

Out float32

99

Implementation: Float64

64 Bit Floating Point Implementation

Outports Data Type

Out float64

100

Block: Gain

Inports

In Input

Outports

Out Amplified input

Mask Parameters

Gain Gain factor in floating point format

Description:

Amplification of input by gain factor.

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

101

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Outports Data Type

Out float64

102

Block: Inport

Inports

IN Signal from frame program

Mask Parameters

ts_fact Multiplication factor of base sampling time (in integer
format)

Gain Gain value used in simulation

Offset Offset value used in simulation

Description:

Serves as interface to the frame program. The input of this block is intended for simulation
purposes and can be left unconnected if not used. Also the parameters Gain and Offset are
only used during simulation. The schematic for simulation can be seen in the figure below.
Note: Currently, Gain and Offset parameters are only available in Matlab/Simulink.

Data Types:

int8 8 Bit Fixed Point

int16 16 Bit Fixed Point

int32 32 Bit Fixed Point

float32 32 Bit Floating Point

float64 64 Bit Floating Point

103

Block: Int2Real

Inports

In Integer input

Outports

Out Real output

Mask Parameters

Scale Scaling factor from integer to real

Description:

Conversion block from integer (fixed point) datatypes to real (floating point) datatypes.
Out = In * Scale

Implementations:

FiP8_Float32 8 Bit Fixed Point to 32 Bit Floating Point Implementation

FiP16_Float32 16 Bit Fixed Point to 32 Bit Floating Point Implementation

FiP32_Float32 32 Bit Fixed Point to 32 Bit Floating Point Implementation

FiP8_Float64 8 Bit Fixed Point to 64 Bit Floating Point Implementation

FiP16_Float64 16 Bit Fixed Point to 64 Bit Floating Point Implementation

FiP32_Float64 32 Bit Fixed Point to 64 Bit Floating Point Implementation

Bool_Float32 Boolean to 32 Bit Floating Point Implementation

Bool_Float64 Boolean to 64 Bit Floating Point Implementation

Implementation: FiP8_Float32

8 Bit Fixed Point to 32 Bit Floating Point Implementation

Inports Data Type

In int8

Outports Data Type

Out float32

104

Implementation: FiP16_Float32

16 Bit Fixed Point to 32 Bit Floating Point Implementation

Inports Data Type

In int16

Outports Data Type

Out float32

Implementation: FiP32_Float32

32 Bit Fixed Point to 32 Bit Floating Point Implementation

Inports Data Type

In int32

Outports Data Type

Out float32

Implementation: FiP8_Float64

8 Bit Fixed Point to 64 Bit Floating Point Implementation

Inports Data Type

In int8

Outports Data Type

Out float64

Implementation: FiP16_Float64

16 Bit Fixed Point to 64 Bit Floating Point Implementation

Inports Data Type

In int16

Outports Data Type

Out float64

105

Implementation: FiP32_Float64

32 Bit Fixed Point to 64 Bit Floating Point Implementation

Inports Data Type

In int32

Outports Data Type

Out float64

Implementation: Bool_Float32

Boolean to 32 Bit Floating Point Implementation

Inports Data Type

In bool

Outports Data Type

Out float32

Implementation: Bool_Float64

Boolean to 64 Bit Floating Point Implementation

Inports Data Type

In bool

Outports Data Type

Out float64

106

Block: Limitation

Inports

In Input signal

max Upper limit

min Lower limit

Outports

Out Limited input signal

Description:

Limits the input signal to min and max_sci.
Caution: For correct computation the upper limit max has to be greater than the lower limit
min!

Calculation:

Out =

max In > max

In

min In < min

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

max int16

min int16

Outports Data Type

Out int16

107

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

max int32

min int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

max float32

min float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

max float64

min float64

Outports Data Type

Out float64

108

Block: LookupTable

Inports

In Table index

Outports

Out Table output

Mask Parameters

Lookup Look-up Table

Description:

Look-up Table with 256+1 values.
Note: 257th value is used for preventing index overflow during interpolation.
-> for periodic signals the 257th value should be set equal to 1st value
-> for non-periodic signals the 257th value should be set equal to 256th value

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

109

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

110

Block: LookupTable1D

Inports

x Table index in x direction

Outports

Out Table output

Mask Parameters

TableData Look-up table data

DimX Number of data points in x-direction

Description:

One dimensional look-up table with selectable number of data points.
Table data must be an array of size DimX.
FiP: Input range is from -1 to 1
Float: Input range is from 0 to DimX-1. If input is out of range, output will be cut off (no
extrapolation).

The table of the LookupTable1D block must contain DimX data points and they have to be
arranged as

TableData = [f(x1), f(x2), ... f(xn−1), f(xn)]

with n as the selected DimX value.
For periodic signals, the last entry must be identical to the first entry, see the example in the
following figure.

111

For non-periodic signals there is no restriction regarding the last data point, see the example
in the figure below.

112

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

x int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

x int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

x float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

113

Inports Data Type

x float64

Outports Data Type

Out float64

114

Block: LookupTable2D

Inports

x Table index in x direction

y Table index in y direction

Outports

Out Table output

Mask Parameters

TableData Look-up table data

DimX Number of data points in x-direction

DimY Number of data points in y-direction

Description:

Two dimensional look-up table with selectable number of data points.
Table data must be an array of size DimX*DimY.
FiP: Input range is from -1 to 1
Float: Input range is from 0 to dimension-1. If input is out of range, output will be cut off (no
extrapolation).

The table of the LookupTable2D block must contain DimX times DimY data points and they
have to be arranged as

TableData =[f(x1, y1), f(x2, y1), ... f(xn−1, y1), f(xn, y1),

f(x1, y2), f(x2, y2), ... f(xn−1, y2), f(xn, y2),

...

f(x1, ym−1), f(x2, ym−1), ... f(xn−1, ym−1), f(xn, ym−1),

f(x1, ym), f(x2, ym), ... f(xn−1, ym), f(xn, ym)]

with n as selected DimX and m as selected DimY values.
For periodic signals, the last entries per dimension must be identical to the first entries in this
dimension, see the example in the following figure.

115

For non-periodic signals there is no restriction regarding the last data points, see the example
in the figure below.

116

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

x int16

y int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

x int32

y int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

x float32

y float32

Outports Data Type

Out float32

117

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

x float64

y float64

Outports Data Type

Out float64

118

Block: LoopBreaker

Inports

In Input In(k)

Outports

Out Output Out(k)=In(k-1)

Description:

Block to break algebraic loops.

Implementations:

Bool Boolean Integration

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: Bool

Boolean Integration

Inports Data Type

In bool

Outports Data Type

Out bool

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

119

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Outports Data Type

Out float64

120

Block: ManualSwitch

Inports

In1 Input #1

In2 Input #2

Outports

Out

Mask Parameters

Toggle Toggle

Description:

Toggling between inputs by double-clicking on block.

Doubleclicking of the ManualSwitch block changes the routing of the input signals and doesn’t
open the Function Block Parameters dialog. So if changing the implementation is required,
one has to open the dialog via Mask Parameters command of the context menu.

Developer note: To get the double-click feature the callback function of OpenFnc in Block
Properties is manually altered to

1 if get_param(gcb ,'Toggle ') == '0'

2 set_param(gcb ,'Toggle ', '1');

3 else

4 set_param(gcb ,'Toggle ', '0');

5 end

6 setBlockData(gcs , gcb);

7 initSFunction(gcb);

Implementations:

Bool Boolean Implementation

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: Bool

Boolean Implementation

121

Inports Data Type

In1 bool

In2 bool

Outports Data Type

Out bool

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In1 int8

In2 int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In1 int16

In2 int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In1 int32

In2 int32

Outports Data Type

Out int32

122

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In1 float32

In2 float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In1 float64

In2 float64

Outports Data Type

Out float64

123

Block: Maximum

Inports

In1 Input #1

In2 Input #2

Outports

Out Maximum of Input #1 and Input #2

Description:

Outputs the greater value of the two input signals.

Calculation:
Out = max (In1, In2)

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In1 int16

In2 int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

124

Inports Data Type

In1 int32

In2 int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In1 float32

In2 float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In1 float64

In2 float64

Outports Data Type

Out float64

125

Block: Minimum

Inports

In1 Input #1

In2 Input #2

Outports

Out Minimum of Input #1 and Input #2

Description:

Outputs the lesser value of the two input signals.

Calculation:
Out = min (In1, In2)

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In1 int16

In2 int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

126

Inports Data Type

In1 int32

In2 int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In1 float32

In2 float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In1 float64

In2 float64

Outports Data Type

Out float64

127

Block: Not

Inports

In

Outports

Out

Description:

Logical inverter block.

Implementations:

Bool Boolean Implementation

Implementation: Bool

Boolean Implementation

Inports Data Type

In bool

Outports Data Type

Out bool

128

Block: Or

Inports

In1

In2

Outports

Out

Description:

Logical OR block.

Implementations:

Bool Boolean Implementation

Implementation: Bool

Boolean Implementation

Inports Data Type

In1 bool

In2 bool

Outports Data Type

Out bool

129

Block: Outport

Outports

OUT Signal to frame program

Mask Parameters

ts_fact Multiplication factor of base sampling time (in integer
format)

Gain Gain value used in simulation

Offset Offset value used in simulation

Description:

Serves as interface to the frame program. The output of this block is intended for simulation
purposes and can be left unconnected if not used. Also the parameters Gain, and Offset are
only used during simulation. The schematic for simulation can be seen in the figure below.
The Unit Delay block is only used during simulation and should reflect the time delay caused
by a discrete controller.
Note: Currently, Gain and Offset parameters are only available in Matlab/Simulink.

Data Types:

int8 8 Bit Fixed Point

int16 16 Bit Fixed Point

int32 32 Bit Fixed Point

float32 32 Bit Floating Point

float64 64 Bit Floating Point

130

Block: RateLimiter

Inports

In

Init Value which is loaded at rising flanke of enable signal

Enable Enable == 0: Deactivation of block; Out is set to In.
Enable != 0: Activation of block; Out is rate limited.
Enable 0->1: Preloading of output; Out is set to value of Init
input

Outports

Out

Mask Parameters

Tr Rising time in seconds. Slew rate will be 1/Tr

Tf Falling time in seconds. Slew rate will be 1/Tf

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

Limitation of rising and falling rate.
Function of Enable:
0: rate limiting disabled, signal is passed through
1: rate limiting enabled, signal is rate limited
0->1: preload of output with value from init input

Rising and falling time refer to a step from 0 to 1. Entries for Tr: Rising time and Tf: Falling
time smaller than the actual sample time will be limited to the sample time internally.
The 16- and 32-Bit fixed point implementations are based on an internal 32-Bit wide slew-rate
variable while the 8-Bit fixed point implementation uses a 16-Bit wide slew-rate variable.

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

131

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Init int16

Enable bool

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Init int32

Enable bool

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Init float32

Enable bool

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

132

Inports Data Type

In float64

Init float64

Enable bool

Outports Data Type

Out float64

133

Block: Real2Int

Inports

In Real input

Outports

Out Integer output

Mask Parameters

Scale Scaling factor from real to integer

Description:

Conversion block from real (floating point) datatypes to integer (fixed point) datatypes.
Out = In / Scale

Implementations:

Float32_FiP8 32 Floating Point to 8 Bit Fixed Point Implementation

Float32_FiP16 32 Floating Point to 16 Bit Fixed Point Implementation

Float32_FiP32 32 Floating Point to 32 Bit Fixed Point Implementation

Float64_FiP8 64 Floating Point to 8 Bit Fixed Point Implementation

Float64_FiP16 64 Floating Point to 16 Bit Fixed Point Implementation

Float64_FiP32 64 Floating Point to 32 Bit Fixed Point Implementation

Float32_Bool 32 Floating Point to Boolean Implementation

Float64_Bool 64 Floating Point to Boolean Implementation

Implementation: Float32_FiP8

32 Floating Point to 8 Bit Fixed Point Implementation

Inports Data Type

In float32

Outports Data Type

Out int8

134

Implementation: Float32_FiP16

32 Floating Point to 16 Bit Fixed Point Implementation

Inports Data Type

In float32

Outports Data Type

Out int16

Implementation: Float32_FiP32

32 Floating Point to 32 Bit Fixed Point Implementation

Inports Data Type

In float32

Outports Data Type

Out int32

Implementation: Float64_FiP8

64 Floating Point to 8 Bit Fixed Point Implementation

Inports Data Type

In float64

Outports Data Type

Out int8

Implementation: Float64_FiP16

64 Floating Point to 16 Bit Fixed Point Implementation

Inports Data Type

In float64

Outports Data Type

Out int16

135

Implementation: Float64_FiP32

64 Floating Point to 32 Bit Fixed Point Implementation

Inports Data Type

In float64

Outports Data Type

Out int32

Implementation: Float32_Bool

32 Floating Point to Boolean Implementation

Inports Data Type

In float32

Outports Data Type

Out bool

Implementation: Float64_Bool

64 Floating Point to Boolean Implementation

Inports Data Type

In float64

Outports Data Type

Out bool

136

Block: Saturation

Inports

In Input

Outports

Out Limited output

Mask Parameters

max Upper Limit

min Lower Limit

Description:

Saturation of output to adjustable upper and lower limit.

If the entry for Upper Limit is lower than the entry for Lower Limit then the limits will be
swapped internally.

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

137

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Outports Data Type

Out float64

138

Block: SaveSignal

Inports

In Input signal to be saved

Description:

Makes the incoming signal accessible for reading with parameter numbers.

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

139

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

140

Block: Selector

Inports

In0 Input #0

In1 Input #1

In2 Input #2

In3 Input #3

In4 Input #4

In5 Input #5

In6 Input #6

In7 Input #7

Select Input select

Outports

Out Selected input signal

Description:

Passing through of input signal selected by the select inport:
Select = 0 (DSP): Out = In0
Select = 1 (DSP): Out = In1
...
Select = 7 (DSP): Out = In7

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

141

Inports Data Type

In0 int8

In1 int8

In2 int8

In3 int8

In4 int8

In5 int8

In6 int8

In7 int8

Select int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In0 int16

In1 int16

In2 int16

In3 int16

In4 int16

In5 int16

In6 int16

In7 int16

Select int8

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

142

Inports Data Type

In0 int32

In1 int32

In2 int32

In3 int32

In4 int32

In5 int32

In6 int32

In7 int32

Select int8

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In0 float32

In1 float32

In2 float32

In3 float32

In4 float32

In5 float32

In6 float32

In7 float32

Select int8

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

143

Inports Data Type

In0 float64

In1 float64

In2 float64

In3 float64

In4 float64

In5 float64

In6 float64

In7 float64

Select int8

Outports Data Type

Out float64

144

Block: Sequencer

Inports

Start Start signal. Rising flank triggers sequence

Outports

Out1 Output #1

Out2 Output #2

Out3 Output #3

Out4 Output #4

Mask Parameters

Delay1 Time delay for output 1

Delay2 Time delay for output 2

Delay3 Time delay for output 3

Delay4 Time delay for output 4

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

Generation of time delayed (enable) sequence.

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

Start int8

145

Outports Data Type

Out1 int8

Out2 int8

Out3 int8

Out4 int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

Start int16

Outports Data Type

Out1 int16

Out2 int16

Out3 int16

Out4 int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

Start int32

Outports Data Type

Out1 int32

Out2 int32

Out3 int32

Out4 int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

Start float32

146

Outports Data Type

Out1 float32

Out2 float32

Out3 float32

Out4 float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

Start float64

Outports Data Type

Out1 float64

Out2 float64

Out3 float64

Out4 float64

147

Block: Sin2Limiter

Inports

In

Init Value which is loaded at rising flanke of enable signal

Enable Enable == 0: Deactivation of block; Out is set to zero.
Enable != 0: Activation of block; Out is rate limited.
Enable 0->1: Preloading of output; Out is set to value of Init
input

Outports

Out

Mask Parameters

Tr Rising time in seconds. Slew rate will be 1/Tr

Tf Falling time in seconds. Slew rate will be 1/Tf

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

Limitation of rising and falling rate with sin^2 characteristic.
Note: A running limitation process can not be interrupted!
Function of Enable:
0: rate limiting disabled, signal is set to zero
1: rate limiting enabled, signal is rate limited
0->1: preload of output with value from init input

Rising and falling time refer to a step from 0 to 1. Entries for Tr: Rising time and Tf: Falling
time smaller than the actual sample time will be limited to the sample time internally.

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

148

Inports Data Type

In int16

Init int16

Enable bool

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Init int32

Enable bool

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Init float32

Enable bool

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Init float64

Enable bool

149

Outports Data Type

Out float64

150

Block: Sin3Gen

Inports

A Amplitude

f Frequency

Outports

u Sine wave output phase u

v Sine wave output phase v

w Sine wave output phase w

Mask Parameters

fmax Maximum Frequency in Hz

Offset Offset

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

Generation of a 3 sine waves with amplitude (A) and frequency (f).

Calculation fixed point implementation:

uk = Ak sin (2fkfmaxkTs) +Aoffset

vk = Ak sin

(
2fkfmaxkTs −

2π

3

)
+Aoffset

wk = Ak sin

(
2fkfmaxkTs +

2π

3

)
+Aoffset

For sine calculation a lookup table with 256 entries is used. This results in a short computation
time but with the downside of reduced accuracy for the FiP32 implementation.

Calculation floating point implementation (parameter f_max is ignored):

uk = Ak sin (2πfkkTs) +Aoffset

vk = Ak sin

(
2πfkkTs −

2π

3

)
+Aoffset

wk = Ak sin

(
2πfkkTs +

2π

3

)
+Aoffset

151

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

A int16

f int16

Outports Data Type

u int16

v int16

w int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

A int32

f int32

Outports Data Type

u int32

v int32

w int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

A float32

f float32

152

Outports Data Type

u float32

v float32

w float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

A float64

f float64

Outports Data Type

u float64

v float64

w float64

153

Block: SinGen

Inports

A Amplitude

f Frequency

Outports

u Sine wave output

Mask Parameters

fmax Maximum Frequency in Hz

Offset Offset

Phase Phase [-Pi..Pi]

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

Generation of a sine wave with amplitude (A) and frequency (f).

Calculation fixed point implementation:

uk = Ak sin (2fkfmaxkTs + φphase) +Aoffset

For sine calculation a lookup table with 256 entries is used. This results in a short computation
time but with the downside of reduced accuracy for the FiP32 implementation.

Calculation floating point implementation (parameter f_max is ignored):

uk = Ak sin (2πfkkTs + φphase) +Aoffset

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

154

Inports Data Type

A int16

f int16

Outports Data Type

u int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

A int32

f int32

Outports Data Type

u int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

A float32

f float32

Outports Data Type

u float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

A float64

f float64

Outports Data Type

u float64

155

Block: TypeConv

Inports

In

Outports

Out

Description:

Data Type Conversion

Implementations:

FiP8_16 8 to 16 Bit Fixed Point Implementation

FiP8_32 8 to 32 Bit Fixed Point Implementation

FiP16_8 16 to 8 Bit Fixed Point Implementation

FiP16_32 16 to 32 Bit Fixed Point Implementation

FiP32_8 32 to 8 Bit Fixed Point Implementation

FiP32_16 32 to 16 Bit Fixed Point Implementation

Bool_FiP16 Boolean to 16 Bit Fixed Point Implementation

Bool_FiP32 Boolean to 32 Bit Fixed Point Implementation

FiP16_Bool 16 Bit Fixed Point to Boolean Implementation

FiP32_Bool 32 Bit Fixed Point to Boolean Implementation

Implementation: FiP8_16

8 to 16 Bit Fixed Point Implementation

Inports Data Type

In int8

Outports Data Type

Out int16

Implementation: FiP8_32

8 to 32 Bit Fixed Point Implementation

156

Inports Data Type

In int8

Outports Data Type

Out int32

Implementation: FiP16_8

16 to 8 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int8

Implementation: FiP16_32

16 to 32 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int32

Implementation: FiP32_8

32 to 8 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int8

Implementation: FiP32_16

32 to 16 Bit Fixed Point Implementation

157

Inports Data Type

In int32

Outports Data Type

Out int16

Implementation: Bool_FiP16

Boolean to 16 Bit Fixed Point Implementation

Inports Data Type

In bool

Outports Data Type

Out int16

Implementation: Bool_FiP32

Boolean to 32 Bit Fixed Point Implementation

Inports Data Type

In int8

Outports Data Type

Out int32

Implementation: FiP16_Bool

16 Bit Fixed Point to Boolean Implementation

Inports Data Type

In int16

Outports Data Type

Out bool

Implementation: FiP32_Bool

32 Bit Fixed Point to Boolean Implementation

158

Inports Data Type

In int32

Outports Data Type

Out bool

159

Block: uConstant

Outports

Out Constant output

Mask Parameters

Value Constant factor

Description:

Constant value.

Implementations:

Bool Boolean Integration

Int8 8 Bit Integer Implementation

Int16 16 Bit Integer Implementation

Int32 32 Bit Integer Implementation

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: Bool

Boolean Integration

Outports Data Type

Out bool

Implementation: Int8

8 Bit Integer Implementation

Outports Data Type

Out int8

160

Implementation: Int16

16 Bit Integer Implementation

Outports Data Type

Out int16

Implementation: Int32

32 Bit Integer Implementation

Outports Data Type

Out int32

Implementation: FiP8

8 Bit Fixed Point Implementation

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Outports Data Type

Out float32

161

Implementation: Float64

64 Bit Floating Point Implementation

Outports Data Type

Out float64

162

Block: uGain

Inports

In Input

Outports

Out Amplified input

Mask Parameters

Gain Gain factor in floating point format

Description:

Amplification of input by gain factor with output wrapping.

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 32 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

163

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

32 Bit Floating Point Implementation

Inports Data Type

In float64

Outports Data Type

Out float64

164

Block: uRateLimiter

Inports

In

Init Value which is loaded at rising flanke of enable signal

Enable Enable == 0: Deactivation of block; Out is set to In.
Enable != 0: Activation of block; Out is rate limited.
Enable 0->1: Preloading of output; Out is set to value of Init
input

Outports

Out

Mask Parameters

Tr Rising time in seconds. Slew rate will be 1/Tr

Tf Falling time in seconds. Slew rate will be 1/Tf

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

Limitation of rising and falling rate.
Function of Enable:
0: rate limiting disabled, signal is passed through
1: rate limiting enabled, signal is rate limited
0->1: preload of output with value from init input

Rising and falling time refer to a step from 0 to 1. Entries for Tr: Rising time and Tf: Falling
time smaller than the actual sample time will be limited to the sample time internally.
The 16- and 32-Bit fixed point implementations are based on an internal 32-Bit wide slew-rate
variable while the 8-Bit fixed point implementation uses a 16-Bit wide slew-rate variable.

Implementations:

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

165

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Init int16

Enable bool

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Init int32

Enable bool

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Init float32

Enable bool

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

166

Inports Data Type

In float64

Init float64

Enable bool

Outports Data Type

Out float64

167

Block: uSaveSignal

Inports

In Input signal to be saved

Description:

Makes the incoming signal accessible for reading with parameter numbers.

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In uint8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In uint16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In uint32

168

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

169

Block: Xor

Inports

In1

In2

Outports

Out

Description:

Logical XOR block.

Implementations:

Bool Boolean Implementation

Implementation: Bool

Boolean Implementation

Inports Data Type

In1 bool

In2 bool

Outports Data Type

Out bool

170

23 Math

Block: Abs

Inports

In Input u

Outports

Out Absolute value of u

Description:

Calculation of absolute value of input.

Calculation:

Out = |In|

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

171

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Outports Data Type

Out float64

172

Block: Add

Inports

In1 Addend 1

In2 Addend 2

Outports

Out Sum

Description:

Addition of input 1 and input 2.

Calculation:

Out = In1 + In2

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In1 int8

In2 int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

173

Inports Data Type

In1 int16

In2 int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In1 int32

In2 int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In1 float32

In2 float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In1 float64

In2 float64

Outports Data Type

Out float64

174

Block: Atan2

Inports

y

x

Outports

Out Result of atan2(y/x)

Description:

Computation of the angle between the inputs x and y.

Calculation:

Out =

arctan
(y
x

)
x > 0

arctan
(y
x

)
+ π x < 0, y ≥ 0

arctan
(y
x

)
− π x < 0, y < 0

+π
2 x = 0, y > 0

−π
2 x = 0, y < 0

0 x = 0, y = 0

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

y int8

x int8

Outports Data Type

Out int8

175

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

y int16

x int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

y int32

x int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

y float32

x float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

y float64

x float64

176

Outports Data Type

Out float64

177

Block: Average

Inports

In Input value

Outports

Out Averaged value

Mask Parameters

n Number of points to be averaged over

ts_fact Multiplication factor of base sampling time (in integer
format)

Description:

Calculation of moving average value over n numbers.

Calculation:

Outk =
1

n

k∑
i=k−n

Ini

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Outports Data Type

Out int8

178

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Outports Data Type

Out float64

179

Block: Cos

Inports

In Input u

Outports

Out Result of cos(u)

Description:

Cosine computation of input value.

Calculation:
Out = cos (In)

Error for 16 Bit Fixed Point Implementation:

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

180

Inports Data Type

In int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

181

Inports Data Type

In float64

Outports Data Type

Out float64

182

Block: Div

Inports

Num Dividend (Numerator)

Den Divisor (Denominator)

Outports

Out Quotient

Description:

Division of input Num by input Den.

Calculation:

Out =

0 Num = 0,Den = 0

max Num > 0,Den = 0

min Num < 0,Den = 0
Num
Den otherwise

Note: maxVal and minVal refer to the maximum/minimum representable value of the
implementation.

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

Num int8

Den int8

Outports Data Type

Out int8

183

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

Num int16

Den int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

Num int32

Den int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

Num float32

Den float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

Num float64

Den float64

184

Outports Data Type

Out float64

185

Block: Exp

Inports

In Input u

Outports

Out Result of exp(u)

Description:

Computation of the exponential of the input.

Calculation:

Out =

{
eIn In ≤ 0

1 In > 0

Error for 16 Bit Fixed Point Implementation:

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

186

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

187

Block: L2Norm

Inports

u1 Input u1

u2 Input u2

Outports

Out Euclidean norm of u1 and u2

Description:

Calculation of L2-norm (euclidean norm).

Calculation:

Out = ‖u‖ =
√
u2

1 + u2
2

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

u1 int8

u2 int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

188

Inports Data Type

u1 int16

u2 int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

u1 int32

u2 int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

u1 float32

u2 float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

u1 float64

u2 float32

Outports Data Type

Out float64

189

Block: Mult

Inports

In1 Multiplicand 1

In2 Multiplicand 2

Outports

Out Product

Description:

Multiplication of input 1 with input 2.

Calculation:

Out = In1 · In2

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In1 int8

In2 int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

190

Inports Data Type

In1 int16

In2 int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In1 int32

In2 int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In1 float32

In2 float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In1 float64

In2 float64

Outports Data Type

Out float64

191

Block: Negation

Inports

In Input

Outports

Out Negated input value

Description:

Negation of input signal.

Calculation:

Out = −In

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

192

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In float64

Outports Data Type

Out float64

193

Block: Sign

Inports

In Input u

Outports

Out Value corresponding to sign of u

Description:

Signum function.

Calculation:

Out = sgn (In) =

{
1 In ≥ 0

−1 In < 0

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

194

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

195

Block: Sin

Inports

In Input u

Outports

Out Result of sin(u)

Description:

Sine computation of input value.

Calculation:
Out = sin (In)

Error for 16 Bit Fixed Point Implementation:

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

196

Inports Data Type

In int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

197

Inports Data Type

In float64

Outports Data Type

Out float64

198

Block: Sqrt

Inports

In Input u

Outports

Out Result of sqrt(|u|)

Description:

Square root computation of absolute input value.

Calculation:

Out =
√
|In|

Error for 16 Bit Fixed Point Implementation:

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

199

Inports Data Type

In int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

200

Inports Data Type

In float64

Outports Data Type

Out float64

201

Block: Sub

Inports

Plus Minuend

Minus Subtrahend

Outports

Out Difference

Description:

Subtraction of input Minus from input Plus.

Calculation:

Out = Plus−Minus

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

Plus int8

Minus int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

202

Inports Data Type

Plus int16

Minus int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

Plus int32

Minus int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

Plus float32

Minus float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

Plus float64

Minus float64

Outports Data Type

Out float64

203

Block: Sum

Inports

In1 Input #1

In2 Input #2

In3 Input #3

In4 Input #4

In5 Input #5

In6 Input #6

In7 Input #7

In8 Input #8

Outports

Out Result

Mask Parameters

In1 Input #1

In2 Input #2

In3 Input #3

In4 Input #4

In5 Input #5

In6 Input #6

In7 Input #7

In8 Input #8

Description:

Sum of inputs:
+ ... Input will be added to result.
- ... Input will be subtracted from result.
0 ... Input will be ignored.

204

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In1 int8

In2 int8

In3 int8

In4 int8

In5 int8

In6 int8

In7 int8

In8 int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type

In1 int16

In2 int16

In3 int16

In4 int16

In5 int16

In6 int16

In7 int16

In8 int16

Outports Data Type

Out int16

205

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In1 int32

In2 int32

In3 int32

In4 int32

In5 int32

In6 int32

In7 int32

In8 int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In1 float32

In2 float32

In3 float32

In4 float32

In5 float32

In6 float32

In7 float32

In8 float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

206

Inports Data Type

In1 float64

In2 float64

In3 float64

In4 float64

In5 float64

In6 float64

In7 float64

In8 float64

Outports Data Type

Out float64

207

Block: uAdd

Inports

In1 Addend 1

In2 Addend 2

Outports

Out Sum

Description:

Addition of input 1 and input 2 with output wrapping.

Calculation:

Out = In1 + In2

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

In1 int8

In2 int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

208

Inports Data Type

In1 int16

In2 int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

In1 int32

In2 int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

In1 float32

In2 float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

In1 float64

In2 float64

Outports Data Type

Out float64

209

Block: uSub

Inports

Plus Minuend

Minus Subtrahend

Outports

Out Difference

Description:

Subtraction of input Minus from input Plus with output wrapping.

Calculation:

Out = Plus−Minus

Implementations:

FiP8 8 Bit Fixed Point Implementation

FiP16 16 Bit Fixed Point Implementation

FiP32 32 Bit Fixed Point Implementation

Float32 32 Bit Floating Point Implementation

Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type

Plus int8

Minus int8

Outports Data Type

Out int8

Implementation: FiP16

16 Bit Fixed Point Implementation

210

Inports Data Type

Plus int16

Minus int16

Outports Data Type

Out int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type

Plus int32

Minus int32

Outports Data Type

Out int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type

Plus float32

Minus float32

Outports Data Type

Out float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type

Plus float64

Minus float64

Outports Data Type

Out float64

211

	I Installation
	Software versions
	Setup with Scilab/Xcos support
	Installation
	Uninstallation

	Setup of Java for standalone operation
	Configuration of Code Composer Studio
	Install the TI v16.9.5 compiler
	Texas Instruments target processor types
	Supported processors families
	Change target processor in Code Composer Studio

	Change predefined Symbols

	Configuration of MPLABX
	Install the XC16 compiler
	Microchip target processor types
	Supported processors families
	Change target processor in MPLABX

	Change predefined Symbols

	II General
	Introduction to X2C
	Boolean data representation
	Fixed point data representation
	Standard signals
	Unlimited/Unbalanced signals

	Floating point data representation
	Standard signals
	Unlimited/Unbalanced signals

	Restrictions
	Algebraic loops
	Connection of blocks with different implementations

	Basic structure of the C Code
	Main.c
	Hardware.c

	Testing
	JUnit tests
	CUnit tests

	Coding Conventions
	Language
	General naming conventions
	Naming of files
	Naming of functions and methods
	Naming of macros
	Naming of variables
	Naming of model parameters
	Naming of X2C blocks
	Source and header files
	Global definitions
	Template files
	Include order of header files
	Hardware registers

	MISRA-C 2004 compliance
	Applied rules

	III Utilities
	Communicator
	Scilab/Xcos Communicator start
	Standalone Communicator start
	Basic functions of the Communicator
	Settings
	Change parameters on the target with the Communicator

	Scope
	Block Generator
	Block properties
	Implementation properties
	Save or load a block

	IV How-To
	X2C code generation with Scilab/Xcos
	Loading and building the demo application Blinky in Code Composer Studio
	Loading and building the demo application Blinky in MPLABX
	Loading and building the demo application Blinky in Keil Vision
	The creation of an external project-specific X2C block
	The creation of the basic structure
	Coding the source file
	Coding the conversion function
	A conversion function in Java
	A conversion function in JavaScript
	A conversion function in Python

	Finalizing the block in Scilab
	The block in Code Composer Studio 7

	Setup X2C for use in a B&R®Automation Studio® project
	Configuration
	Logical View
	Software Configuration
	Communication configuration

	V Libraries
	Basic
	CommunicatorStart (Xcos only)
	CreateDocumentation
	Interact (Xcos only)
	ModelTransformation (Xcos only)

	Control
	AdaptivePT1
	Delay
	DT1
	I
	PI
	PID
	PIDLimit
	PILimit
	PT1
	TDSystemO1
	TDSystemO2
	TF1
	TF2
	uI

	General
	And
	AutoSwitch
	Constant
	Gain
	Inport
	Int2Real
	Limitation
	LookupTable
	LookupTable1D
	LookupTable2D
	LoopBreaker
	ManualSwitch
	Maximum
	Minimum
	Not
	Or
	Outport
	RateLimiter
	Real2Int
	Saturation
	SaveSignal
	Selector
	Sequencer
	Sin2Limiter
	Sin3Gen
	SinGen
	TypeConv
	uConstant
	uGain
	uRateLimiter
	uSaveSignal
	Xor

	Math
	Abs
	Add
	Atan2
	Average
	Cos
	Div
	Exp
	L2Norm
	Mult
	Negation
	Sign
	Sin
	Sqrt
	Sub
	Sum
	uAdd
	uSub

