
Getting Started with X2C®

X2C® v6.4.2560
Free Edition

April 10, 2022
© Linz Center of Mechatronics GmbH

Contents

I Installation 2

1 Software versions 2

2 Setup with Scilab & Xcos support 2
2.1 Installation . 2
2.2 Uninstallation . 2

3 Setup of Java for standalone operation 3

II How-To 5

4 X2C® code generation with Scilab 5

5 Loading and building the demo application Blinky in Code Composer Studio 7

6 Loading and building the demo application Blinky in MPLAB® X 8

7 Loading and building the demo application Blinky in µVision® 10

1

Part I

Installation

1 Software versions

Following software versions were tested for full X2C® functionality:

Software Version

Required:

Scilab (www.scilab.org) 6.1.1

Optional (for standalone operation):

Java Runtime Environment Java SE 8 / ojdkbuild 13 JRE

Optional (for documentation):

MiKTeX (www.miktex.org) 2.9

Doxygen (www.doxygen.org) 1.8.10

Graphviz (www.graphviz.org) 2.38

Optional (for programming):

TI Code Composer Studio 11.x

TI Code Generation Tools c2000_16.9.5.LTS / arm_16.9.4.LTS

Keil µVision® 5.x

Microchip MPLAB® X 5.xx

Microchip XC16 1.xx

Different versions of these programs may work but without warranty.

2 Setup with Scilab & Xcos support

2.1 Installation

1. Open Scilab and with the File Browser navigate to
<X2C_ROOT>\System\Scilab\Scripts. Right click on setup.sce and click Execute in
Scilab.

2. Restart Scilab

3. The setup command creates a X2C configuration file which will automically load X2C
libraries and palettes at startup of Scilab .

2.2 Uninstallation

1. Open Scilab and execute the command initX2C(%f) in the Scilab console.

2. Restart Scilab

3. Once above command was execeuted, the X2C configuration file is deleted and Scilab
will not load any X2C libraries or palettes anymore.

For the unlikely event that Scilab freezes at startup and remains in a deadlock state, the
deinstallation can be done manually by deleting the file scilab.ini located in the Scilab home
directory (for Windows typically C:\Users\<your user name>\AppData\Roaming\Scilab\scilab-
6.x.x).

2

www.scilab.org
http://github.com/ojdkbuild/ojdkbuild
www.miktex.org
www.doxygen.org
www.graphviz.org

3 Setup of Java for standalone operation

In X2C standalone operation, this means only X2C Communicator and Scope are to be used,
installation and setup of Scilab is not necessary. However, a Java runtime environment is
required.
The recommended Java software is OpenJDK. The ojdkbuild project provides, inter alia,
Microsoft Windows Installer (MSI) files by using the source code of OpenJDK.
Following setup steps are required to setup ojdkbuild for X2C :

1. Download the appropriate MSI installer from the website (the file name starts with
’java-13-openjdk-jre’)

2. Run the installer

3. When the installer reaches the ’Custom Setup’ step, be sure the following additional
options are enabled/selected:

(a) Click on the small ’plus’ symbol next to the ’OpenJDK JRE’ icon to show the list of
available options

Figure 1: Setup Options

(b) Ensure these options are enabled:

• Windows Registry

• PATH Variable

• JAVA_HOME Variable

• JAR Files Association

3

Figure 2: Selected Setup Options

4. Wait for the installer to complete

You may check the successful Java setup by running the X2C Communicator. A double click
on the ’Communicator.jar’ file in the <X2C ROOT>\System\Java directory should open the
Communicator application.

4

Part II

How-To

4 X2C® code generation with Scilab

The following section describes X2C code generation of a Xcos model based on the Blinky
demo application.

1. Open Scilab and in the file browser navigate to your project directory
(e.g. <X2C_ROOT>\DemoApplication\Blinky_TI_TMS320F28069_controlSTICK\X2CCode).

2. Double click on DemoApplication.zcos. The example project contains a few blocks
used to demonstrate the basic function of X2C (see Figure 3). The Inport and Outport
blocks define the interface between the generated X2C code and the peripheral
functions (e.g. ADC or GPIO Pins) on the target. For details about each block function
read X2Copen.Doc.pdf in the documentation folder of the X2C directory.

Figure 3: Blinky demo application in Scilab

3. Double click on start Communicator. Some details of the current actions of the
Communicator are shown in the Log area of the Communicator window and the Scilab
command line:

Starting Communicator

done

Successfully connected to Communicator

4. Double click on Transform model and push to Communicator and check the pop-up
window for the end of the transformation process.

5. Click Create Code in the Communicator. Now the files X2C.h and X2C.c are generated
in the <PROJECT_ROOT>\X2CCode directory and the Log screen should contain the
lines:

5

[...]

Model updated

Model XML file write: OK

Create code successful.

6. The C code for the X2C application has been created. Depending on the used target
start the programming tool (e.g. Code Composer Studio , µVision or MPLAB X) and
import the Blinky demo application project as described in Section 5, or 6 respectively.
Follow the instructions on how to configure and download the application to the target.

6

5 Loading and building the demo application Blinky in Code
Composer Studio

The demo application Blinky is intended to be used with a TI F28069 Piccolo controlSTICK.

1. Connect the TI F28069 Piccolo controlSTICK to the computer.

2. Open Code Composer Studio (choose workspace directory as you like). Now click
Project → Import Existing CCS Eclipse Project. Browse to the location of the Blinky
project (<X2C_ROOT>\DemoApplication\Blinky_TI_TMS320F28069_controlSTICK).
Click Finish to import the project.

3. In the Code Composer Studio file structure of the Blinky demo project there are two
virtual folders Blocks and Core, which should be linked directly to the X2C directory.
To ensure this go to Project → Properties drop down Resource and click Linked
Resources. Double click on folder X2C_ROOT and set the correct link to your X2C
installation directory (<X2C_ROOT>). After hitting OK two times there should not be
any warning signs (like shown in Figure 4) at the icons for the linked files in the Blocks
and Core folders.

Figure 4: Code Composer Studio invalid (left) and valid (right) X2C root directory

4. The generated code from X2C is located in the folder <X2C_ROOT>\DemoApplication\
Blinky_TI_TMS320F28069_controlSTICK\X2CCode. To check if code generation went
fine go to the X2CCode folder and open X2C.c. Make sure time and date of code
generation is plausible.

5. Build the project in Code Composer Studio by clicking Project → Build all or by
clicking on the Hammer symbol as seen in Figure 5 at the top of the screen. Check for
errors while building in the console at the bottom of the screen.

Figure 5: Code Composer Studio build and debug buttons

6. If your target is connected to the computer click Run → Debug or click on the Bug
symbol as seen in Figure 5 at the top. The program is now transferred to the target and
can be started with the green arrow button at the top.

7. After starting the program the on-board LED of the TI F28069 Piccolo controlSTICK
should be blinking!

7

6 Loading and building the demo application Blinky in MPLAB®

X

The demo application Blinky is build for the combination of the Microstick II with the
dsPIC33FJ128MC802 processor and the MicrostickPlus developer board (for details see
www.microstick.com).
Info: To download a new application only the Microstick II needs to be connected with the
computer.

1. Connect the Microstick II with the computer.

2. Open MPLAB X and click File → Open Project. Browse to the location of the Blinky
demo application in the X2C directory <X2C_ROOT>\DemoApplication\. . .
\Blinky_Microchip_dsPIC33Fxxxx_MicrostickPlus. Click Open Project.

3. In the case the demo application is copied/moved to a different location, the include
paths have to be adapted. To ensure the compiler uses the correct path variables right
click on the Projectname → Properties → XC16 Global Options → xc16-gcc. In the
drop down menu Option categories choose Preprocessing and messages. Click
on the dots beside C include dirs. There are relative paths to the needed include files
listed as seen in Figure 6. Correct the links by double clicking on the path variables.
Info: Only the links to the Library and Controller path need to be updated.

Figure 6: Default path variables for the include files

4. Go to Run → Clean and Build Main Project or click the hammer with brush button as
seen in Figure 7. After building there should be a message BUILD SUCCESSFUL in the
message area at the bottom of the screen.

Figure 7: MPLAB X Clean and Build Main Project button

5. If the build process was successful go to Run → Run Main Project or click the Green

8

www.microstick.com

Arrow button as seen in Figure 7. If there is a message similar to MICROSTICK not
Found try to select the Starter Kits (PKOB) item which represents your board.

6. After starting the program the LED (RB12) on the MicrostickPlus Board should be
blinking!

9

7 Loading and building the demo application Blinky in µVision®

The demo application Blinky is intended to be used with the ST STM32F051R8 Discovery or
the ST STM32F072RB Nucleo kit.

1. Connect the ST development kit with the computer. You may have to install the ST-Link
USB driver (available on www.stm.com) to get the board recognized by your operating
system.

2. Open µVision and click Project → Open Project. Browse to the location of the Blinky
project (either <X2C_ROOT>\DemoApplication\Blinky_ST_STM32F051R8_Discovery
or <X2C_ROOT>\DemoApplication\Blinky_ST_STM32F072RB_Nucleo). Click Open to
import the project.

3. In the µVision file structure of the Blinky demo project are two virtual folders Blocks
and Core, which are linked relatively to the X2C directory. If the Blinky demo project is
copied/moved to a different location, the include paths as seen in Figure 8 have to be
adapted.

Figure 8: µVision include paths setting

To open shown window go to Project → Options for target ’Blinky Demo’ change to
tab C/C++ and click ... next to the include paths text field.

4. The generated code from X2C is located in the X2CCode folder (eg. <X2C_ROOT>\
DemoApplication\Blinky_ST_STM32F072RB_Nucleo\X2CCode). To check if code gen-
eration went fine go to the X2CCode folder and open X2C.c. Make sure time and date
of code generation are plausible.

5. Build the project in Code Composer Studio by clicking Project → Build target or by
clicking on the Build symbol as seen in Figure 9 at the top left of the µVision screen.
Check for errors while building in the console at the bottom of the screen.

Figure 9: µVision build and load buttons

6. If your target is connected to the computer click Flash → Download or click on the
Download symbol as seen in Figure 9 at the top left of the µVision screen. The program
is now transferred to the target and is automatically started.

10

www.st.com

7. After starting the program the green on-board LED of the ST development kit should
be blinking!

8. To use X2C Communicator and Scope the computer has to be connected via serial
interface to the development kit. Early versions of the ST STM32F051R8 Discovery kit
do not support virtual COM port over USB. In this case a TTL-level compatible RS-232
adapter has to be connected to pin PA9 - TxD, PA10 - RxD and GND.

11

	I Installation
	Software versions
	Setup with Scilab & Xcos support
	Installation
	Uninstallation

	Setup of Java for standalone operation

	II How-To
	X2C® code generation with Scilab
	Loading and building the demo application Blinky in Code Composer Studio
	Loading and building the demo application Blinky in MPLAB® X
	Loading and building the demo application Blinky in µVision®

